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CHAPTER I

INTRODUCTION

Structural failure is rarely a _sudden death" type of

event, such sudden failures may occur only under abnormal

loadings like bomb or gas explosions and very strong

earthquakes. In most cases, structures fail due to damage

accumulated under normal loadings such as wind loads, dead and

live loads. The consequence of cumulative damage will affect

the reliability of surviving components and finally causes

collapse of the system. The cumulative damage effects on

system reliability under time-invariant loadings are of

practical interest in structural design and therefore will be

investigated in this study.

The scope of this study is, however, restricted to the

consideration of damage accumulation as the increase in the

number of failed components due to the violation of their

strength limits. Progressive failure processes such as

corrosion, fatigue and crack growth are not investigated in

this study.
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I.i Background and Significance of the Study

Structural designs have been traditionally based on

deterministic design methodology. The deterministic method

considers all design parameters to be known with certainty.

This methodology is, therefore, inadequate to design complex

structures subjected to a variety of complex, severe loading

conditions. These complex conditions introduce uncertainties

and so the actual factor of safety remains unknown. In the

deterministic methodology the contingency of failure is

discounted, so there is a use of a high factor of safety.

Probabilistic design method is concerned with the

probability of non-failure performance of structures or

machine elements. Probabilistic methodology is a convenient

tool to describe, or model, physical phenomena too complex to

treat with the present level of scientific knowledge. It is

much more useful in situations where the design is

characterized by complex geometry, possibility of catastrophic

failure or sensitive loads and material properties.

i.i.i Comparison between Deterministic and Probabilistic

Design Methodology

The probabilistic design methodology produces

designs that are robust and allows the quantification of the

level of reliability in the design, as opposed to
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deterministic designs. Hence, it is begining to attract more

attention than the traditional deterministic design.

Probabilistic design procedures promise to improve the

quality of engineered systems for the following reasons:

I. Probabilistic design incorporates given statistical

data explicitly into design algorithms. Conventional design

discards such data.

2. It is more meaningful to say, "This system has a

probability of 10 -4 of failing after i000 hours of operation,"

than to say, "This system has a factor of safety of 2.3."

3. Rational comparisons can be made between two or more

competing designs for a proposed system. Without other

considerations, the engineer chooses the design having the

lowest probability of failure, or basis for developing

economic strategies.

4. An "optimal" design of a system results when each

component chosen so that its probability of failure is the

same.

5. By treating each nonstatistical uncertainty as a

random variable, its effect on the final design can be

quantified.

6. Probabilistic-based information on mechanical and

structural performance can be used to develop rational
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policies toward pricing, warranties, etc.

1.1.2 Structural Reliability under Time-invariant Loads

This study primarily focusses on the effects of time-

invariant loads on the structure. The effects of time-

invariant loads on element and system reliability are

discussed below.

1.1.2.1 Element Reliability

The study of element reliability under cumulative damage

is to include the system effects into element reliability. In

the current codes such as CEB[I], LRFD[2] and AASHTO[3]

specifications, the design of a structural system goes through

the design of components and connections individually. The

target element reliability and safety are achieved by making

them satisfy the limit state functions of local strength with

a high degree of probability. What is the reliability of the

individual component once it is in the actual configuration?

How do the system effects influence the element reliability

and which components are more vulnerable than the others? What

impact do these questions have on a current reliability-based

design code, like the AISC load and resistance factor design

(LRFD) code? These are some preliminary questions sought to be

answered in this study.

Mahadevan and Haldar[4] used the Stochastic Finite
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Element Method (SFEM) to investigate the magnitude of system

effects on component reliability in framed structures designed

by the LRFD code. However, their analysis was based on linear

elastic behavior. The effect of geometric non-linearity was

included in SFEM-based reliability analysis by Liu and Der

Liureghian[5] and Haldar and Zhou[6]. The effect of material

nonlinearity has been considered by many researchers to

estimate the overall system reliability, but the focus of this

study is the reliability of individual elements affected by

the formation of plastic hinges elsewhere in the structure.

Therefore, a rational procedure has been developed in this

study to account for the effect of structural system damage.

Although system reliability research has been active for

the past twenty years, it still has not been applied in

practical design. The inclusion of system effects on element

reliability may offer a solution to this problem so that the

element-based design can account for system effects.

1.1.2.2 System Reliability

The collapse of a system is the culmination of cumulative

damage of components. This idea resulted in the development of

several failure path identification techniques including

branch and bound method, B-unzipping method, etc. However,

these techniques are difficult to implement in case of large
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structures, because they are time consuming. This is one of

the important reasons for the slow application of system

reliability in modern design[7]. This study and analysis are

used to examine the performance of the LRFD approach in the

design of realistic structures, resulting in several important

observations.

In this study, the loadings are idealized as time-

invariant. In other words, the reliability so obtained

corresponds to that under one load application though it may

represent some extreme value of the load over a given period.

However, the reliability of an element or a structure varies

over its lifetime, due to repetitive load applications causing

accumulated damage, degradation of material resistance over

time, corrosion, wear etc.

1.2 Research Objectives and Organization of the Report

The above discussion leads to the following objectives:

i. Discussion of the probabilistic design methodology

in depth and an overview of the software, NESSUS(Numerical

Evaluation of Stochastic Structures Under Stress) used

primarily in this project. This is described in detail in

Chapter II.

2. Discussion of the LRFD source codes and their
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application to this project. This is described in Chapter III.

3. Development of a failure path-based procedure to

estimate system reliability of assumed steel structures, along

with the development of a computational procedure to estimate

the element reliability under cumulative damage. This is

described in Chapter IV.

4. The results of the system reliability analysis, their

interpretation and explanation, are described in Chapter V.

5. The summary and conclusions of the present study and

suggestions for further research are presented in Chapter VI.

6. The appendix A lists the computer program formulated

for lognormal distribution. Appendix B gives the detailed

loading calculations done for the structures in accordance

with the Uniform Building Codes. Moment analysis of the

structures, which is done by finite element software(STAAD-

III) is given in appendix C. The algorithm and flowchart to

operate NESSUS for probabilistic design is listed in Appendix

D.



CHAPTER II

PROBABILISTIC DESIGN METHODOLOGY

2.1 Role of Probability in Engineering

Quantitative methods of modeling, analysis, and

evaluation are the tools of modern engineering. Some of these

methods have become quite elaborate and include sophisticated

mathematical modeling and analysis, computer simulation, and

optimization

sophistication

laboratory models,

techniques.

in the

they

However, irrespective of the

models, including experimental

are predicated on idealized

assumptions or conditions; therefore, information derived from

these quantitative models may or may not reflect reality

closely.

In engineering designs, decisions are often required

irrespective of the state of completeness and quality of

information, and thus are made under conditions of

uncertainty. In other words the consequence of a given

decision cannot be determined with complete confidence.

Besides the fact that the information must often be inferred

from similar circumstances or derived through modeling. Many

problems in engineering involve natural processes and

phenomena that are inherently random; the states of such

8
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phenomena are naturally indeterminate and thus cannot be

described with definiteness. For these reasons, decisions

required while engineering planning and design invariably must

be made, and are made, under conditions of uncertainty.

The effects of such uncertainty in design and planning

are important. To be sure, the quantification of such

uncertainty and evaluation of its effects on the performance

and design of an engineering system, should include concepts

and methods of probability. Further, under conditions of

uncertainty, the design and planning of engineering systems

involve risks, and the formulation of related decisions

requires them to be risk free. The problems of uncertainty in

the design can be overcome by applying the methods of

probability. Thus, the role of probability is quite pervasive

in engineering. It ranges from the description of information

to the development of bases for design and decision making[8].

Many phenomena or processes of concern to engineers contain

randomness, that is, the actual outcomes are sometimes

unpredictable.

experimental

Such phenomena are characterized by

observations that are different from one

experiment to another, even if performed under identical

conditions. In other words, there is usually a range of

measured or observed values and within this range certain
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values may occur more frequently than others. Clearly, if

recorded data is of a variable exhibit scatter or dispersion,

the value of the variable cannot be predicted with certainty.

Such a variable is known as random variable and its value or

range of values can be predicted only with an associated

probability. When two or more random variables are involved,

the characteristics of one variable may depend on the other.

Since there is a range of possible values of random

variable, we would be interested in some central value, such

as the average. In particular, because the different values of

the random variable are associated with different

probabilities, the weighted average is taken into

consideration. This weighted average is known as sample mean

value of the random variable. Therefore, if X is a discrete

random variable, then the mean value, Dx is obtained as

follows

Z/
lax - (2-1)

n

where,

_x is the mean

X is the random variable.

n is the number of observations.
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Besides the sample mean, the next most important quantity

of a random variable is its measure of dispersion or

variability, that is, the quantity that gives a measure of how

widely the values of the variate are spread around its mean

value. This deviation can be above or below its central value.

If the deviations are taken with respect to its mean value,

then a suitable average measure of dispersion is called the

Z(X-
Vat(X) - (2-2)

n - 1

variance and is computed using the following relation:

where,

Var(X) is the variance of the random variable X.

Dimensionally, a more convenient measure of dispersion is

the square root of the variance, or the standard deviation,

% : (2-3)

where,

ax is the standard deviation of the random variable X.

Saying whether the dispersion is large or small is

difficult, from the variance or standard deviation. For this

purpose, the measure of dispersion about the central value is
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more useful. In other words, the dispersion is large or small

is meaningful only about the central value. Therefore,

coefficient of variation (COY) is often preferred, which is a

convenient non-dimensional measure of dispersion or

variability. The coefficient of variation is related to the

mean and standard deviation as follows,

where,

COV- °x (2-4)

'IX

ox= Standard deviation of the variable X.

Dx= Mean value of the variable X.

The application of probability is not limited to the

description of experimental data, or the evaluation of the

statistics such as the mean and standard deviation. In fact,

the more significant role of probability concepts is in the

use of this information in the formulation of proper bases for

the design.

2.2 Uncertainty Associated with Design

Engineering uncertainty is not limited to the variability

observed in the basic variables. First, the estimated values

of a given variable (such as the mean) based on observational
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simulation

algorithms
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Second, the mathematical or

models (for example, formulas, equations,

and laboratory models, that are often used in

engineering analysis and designs are idealized representations

of reality). Consequently, predictions and calculations made

from these models may be inaccurate (to some unknown degree)

and thus also contain uncertainty. Human error can result from

errors made by engineers and technicians during the design or

operations phases. It can be reduced by improving the quality

of a control program, but it cannot be avoided entirely.

Usually, human error is very difficult to define. In study,

human error will be treated as modeling error. In some cases,

the uncertainties associated with such prediction or model

errors may be much more significant than those associated with

the inherent variabilities.

All uncertainties, whether they are associated with

inherent variability or with prediction error, may be assessed

in statistical terms and the evaluation of their significance

on the design can be accomplished by the concepts and the

methods of probability.
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2.3 Designing under Uncertainty

If there are uncertainties in the design, the next step

is to ask, how should designs be formulated or decisions

affecting a design resolved? Presumably we may assume the

worst conditions and develop conservative design on this

basis. From the system performance and safety point of view,

this approach may be suitable. However, the resulting design

would be too costly because of over conservatism. On the other

hand an inexpensive design may not ensure the desired level of

performance and safety. Therefore the decisions should be made

considering cost and safety of the design. The most desirable

solution is one that is optimal, in the sense of minimum cost

and maximum benefits. If the available information and the

models to be evaluated contain uncertainties, the analysis

should include the effects of such uncertainties.

Probabilistic design is concerned with the probability of

failure, or preferably, reliability. This methodology is most

useful when uncertainties in material properties and loading

conditions are considered. To apply probabilistic design

methodologies(PDM), all uncertainties are modeled as random

variables, with selected distribution types, means and

standard deviations. The primitive (random) variables that

affect the structural behavior have to be identified. Every
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design project demands some sequential stages of reflection

before one can arrive at the final design goal. This is also

the case with PDM. The various design stages of PDM are as

follgws.

i. Problem Definition.

2. Generating design parameters.

3. Relating the defined problem to the design parameters.

4. Data assembling and application of probability

concepts.

5. Probabilistic Analysis.

6. Interpreting results.

The design stages of PDM are shown in Figure 2-1.

Oata Collection

Uncertain parameters

I Design A(lJustment

-Crttlcal parameters

-Critical failure moaes

-Plost likely conalttons

-Improve(] design

-tns0ectlon scl_e0ule

OE[510NER ]

Functtona! Requirements

;I
Design Parameters

LoacIs, Material properties,

Geometry, Crack size, etc

Figure 2-1: Design stages in PDM [9]
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i. Problem definition

The first step a designer takes in solving a design

problem is to find out the main objective of the design. After

finding out the objective, the next step is to define in a

precise manner the functional requirements, of the system or

component to be designed. These functional requirements should

be able to completely characterize the design objective by

defining it in terms of specific needs. With a clear

understanding of what one is searching for, the designer then

goes to the next stage.

2. Generating design parameters

In order to solve the defined problem, acceptable design

parameters must be generated that will meet the defined

functional requirements. To generate the design parameters one

uses an appropriate design model. The various parameters like

loads, material properties, geometry, crack size etc. are

taken into consideration. The design parameters to be selected

depend on the objective of the design[9].

3. Relating the defined problem to the design parameters

After defining the design parameters the designer then

relates the functional requirements in the functional domain
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to the design parameters in the physical domain, to be sure

that the objective is satisfied. If the relation is

satisfactory, the designer goes to the next stage, if not the

relation is redefined, so that the objective is satisfied.

4. Data assembling and application of probability concepts

This stage requires assembling the essential data that

are available on the problem with regard to the design

parameters. If some data are unavailable then it becomes

necessary to perform a computational simulation analysis to

generate the missing details. Once the data has been

assembled, the next stage is to analyze the assembled data.

NESSUS is the computer tool used to perform the analysis.

NESSUS has three modules known as NESSUS/PRE, NESSUS/FEM and

NESSUS/FPI.

NESSUS/PRE is a preprocessor, which prepares the

statistical data needed for the probabilistic design analysis.

It allows the user to describe the uncertainties in the

structural design parameters. The uncertainties in these

parameters are specified by defining the mean value, standard

deviation and the distribution type, together with an

appropriate form of correlation. Correlated random variables

are then decomposed into a set of uncorrelated vectors by a
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model analysis.

NESSUS/FEM is a general purpose finite element code,

which is used to perform structural analysis and evaluation

of sensitivity due to variation in different uncorrelated

random variables. The response surface, defined in terms of

random variables required for probabilistic analysis in

NESSUS/FPI, is obtained from NESSUS/PRE. NESSUS/FEM

incorporates an efficient perturbation algorithm to compute

the sensitivity of random variables [I0].

I
ii

queries

I Nes sus/Expert I

Finite 1

Element Random

Model vectors

Random

Field data

Analysis
results

Fi&n_e2-2:Modules of NISSUS

NESSUS/FPI is an advanced reliability module, which
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extracts the database generated by NESSUS/FEM to develop a

response model in terms of random variables[ll]. In this

module the probabilistic structural response is calculated

from the performance model. The probability of exceeding a

given response value is estimated by a reliability method.

Inside the NESSUS/FPI module is a sensitivity analysis

program, which determines the most critical design parameters

in the design. The input data for NESSUS/PRE requires

fundamental knowledge of statistics or probability theorems.

The expected details will include determining the mean,

standard deviation, median, coefficient of variation,

variances etc., associated with each random variable. The

designer also determines the probability distribution function

that best describes each random variable. The different

modules of NESSUSare shown in Figure 2-2.

5. ProbabilisticAnalysis

It is at this stage of the design that the designer

defines a limit state function. The limit state function is a

function that defines the boundary between the safe and

failure region. In the limit state function approach for

structural reliability analysis, a limit state function g(_)

is first defined. The g-function, is a function of a vector of
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basic random variables, X=(X_, X2, X3, .... _) with g(X) = 0

being the limit state surface that separates

\ lnitlal Sampling

\ region
\

Final Sampling _ \
Surface

MPD(u*)

Failure

region

0
\

\
5ale

\
region \

g(x)--O

Figure 2-3: Illustration of Most Probable Point

the design space into two regions, namely, the failure

g(_<0) and the safe g(>0) regions. Geometrically, the limit
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state equation, g(X)=0, is a n-dimensional surface that may be

called the "failure surface." One side of the failure surface

is the safe state, g(X)>0, whereas the other side of the

failure surface is the failure state, g(X)<0.

The probability of failure in the failure domain Q is

given by;

Pf = fQ-.-ffx(X) dx (2-6)

where fx(X) is the joint probability density function of X and

is the failure region. The solution of this multiple

integral is, in general, extremely complicated. Alternatively,

a Monte Carlo solution provides a convenient but usually time

consuming approximation. The limit state function method uses

the Most Probable Point (MPP) search approach shown in Figure

2-3. The Most Probable Point is the key approximation point

for the FPI analysis, therefore, the identification of MPP is

an important task. In general, the identification of the MPP

can be formulated as a standard optimization problem and

solved by proper optimization methods.

From the Figure 2-3, as the limit state surface g(X)=0,

moves closer to the origin, the safe region, g(X)>0, decreases

accordingly. Therefore, the position of the failure surface

relative to the origin of the reduced variates should

determine the safety or reliability of the system. The



22

position of the failure surface may be represented by the

minimum distance from the surface g(X)=0 to the origin. The

point on the surface with minimum distance to the origin is

the Most Probable Point (MPP). This is usually determined by

fitting a local tangent to g(X) and moving this tangent until

MPP is estimated.

In the NESSUScode MPP is defined in a transformed space

called u-space where the u's are independent to simplify the

probability computations. By transforming g(x) to g(u), the

most probable point, u', on the limit state, g(_)=0, is the

point that defines the minimum distance from the origin to the

limit state surface. This point is most probable (in the u-

space) because it has maximum joint probability density on the

limit state surface. The required minimum distance is

determined as follows. The distance from a point u'=(u: ", u2,

•.., un') on the failure surface g(u)=0 to the origin is,

D = 1 + u 2 + ........... + u. (2-7)

where, D is the minimum distance from the point on the limit

state surface to the origin.

The FPI code assumes only one MPP. In general, however,
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the possibility exists that there may exist multiple local and

global

example,

algorithm

search.

Most Probable Points.

if the g-function

may result in an

A two MPP problem can occur for

is quadratic and the search

oscillating (non-convergent)

Several approaches are available to search for the MPP.

The search procedure depends on the forms and the number of

the g-function(s). One efficient method in use is the Advanced

Mean Value method. This method blends the conventional mean

value method with the advanced structural reliability analysis

method. This method provides efficient cumulative density

function analysis and the reliability analysis. The step wise

AMY method can be summarized as follows [12]:

i. Obtain the g(X) function based on perturbations about

the mean values.

2. Compute the cumulative density function of the

performance function at selected points using the fast

probability integration method.

3. Select a number of cumulative density function values

that cover a sufficiently wide probability range.

4. For each cumulative density function value, identify

the most probable point.

Another approach considered efficient as well is the
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Adaptive Importance Sampling Method. This method focusses on

reducing the sampling domain in the search space after the MPP

is identified. The Adaptive Importance Sampling method is

generally used for system reliability analysis.

The analytical process involved in the limit state

approach can be illustrated by a basic structural reliability

problem. In the problem only one load effect S, restricted by

one resistance R, is considered.

If one considers a case when R and S are independent,

the limit state equation can be expressed as,

g = R - S (2-8)

and the probability of failure can be expressed as,

Pf = P(R-S_0) = f_" ffR(r)fs(s)dr ds (2-9)

For any random variable the cumulative density

function F(x), is given by

Fx(X) = P(X _ x) = _fx(y) dy (2-10)

provided that x _ y

Therefore Pf is expressed as

Pf = P(R-S_0) = _FR(x)fs(x)dx (2-11)

Assuming a special case of normal random variables, for

some distributions of R and S, it is possible to integrate the

equation (2-11) analytically and find out the probability of
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failure. If S and R have mean DR and Ds and variance's aR2 and

2os2 respectively, the g-function has a mean Dg and variance oq,

given by

It, = laR- It s (2-12)

0, 2 = OR2 + OS2 (2-13)

Therefore the probability of failure is given as,

P/ = P(R-S<O) = P(g<O) = _[O-_tg] (2-14)
o

g

,I,[ - ( _tR-_ts)] = ¢ (-1_) (2-15)
2 2J(o +oR)

Which reduces to,

- P'g (2-16)
o

where _ is defined as the safety index.

Thus the probability of failure is given as
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(2-17)

which can be written as,

Pr -- 1 - _(13)

The reliability of the system is given by

(2-1Z)

P = 1 - P/ (2-19)

where Pr is the reliability of the system.

6. Interpretation of Results

This is the last stage in the methodology. When the

designer approaches this stage, one interprets the results

obtained about the initial objective. If the results do not

satisfy the functional requirements in the stage I, the

designer may adjust order to achieve the set objective.

2.4 Probability Sensitivity Factors

In Engineering performance analysis many sensitivity

measures can be defined. Knowing the effect of each random

variable in the analysis is important for the designer. The
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sensitivity information is quantified by sensitivity factors.

Sensitivity factors suggest which random variables are crucial

and require special attention.

The commonly used sensitivity in deterministic analysis

is the performance sensitivity, 0Z/0Xi, which measures the

change in the performance due to the change in a design

parameter. This concept can be extended to the probabilistic

analysis in which a more direct sensitivity measure is the

reliability sensitivity that measures the change in the

probability/reliability relative to the distribution

parameters such as the mean and the standard deviation.

Although not automated in the code, this analysis can be

performed by varying the parameters.

Another, perhaps more important, kind of probability or

reliability sensitivity analysis is the determination of the

relative importance of the random variables. This analysis can

be done, for example, by repeated probabilistic analysis in

which one random variable at a time is treated as a

deterministic variable. The results of the analyses, for

example, are a number of cumulative density function curves or

reliabilities. Based on the results, the relative importance

of the random variables can be analyzed. The standard FPI

output includes a first order sensitivity factor that provides
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CHAPTER III

LOAD AND RESISTANCE FACTOR DESIGN FOR STEEL

Inherent uncertainties in structural design parameters,

such as loads, geometry, material and sectional properties,

and boundary conditions, are well established. However, in

traditional design procedures, these parameters are considered

deterministic; the uncertainty is accounted for by the use of

safety factors. Thus, in allowable-stress design method, the

ultimate stresses are divided by safety factors to determine

the allowable stresses. A successful design ensures that the

stresses caused by the nominal values of the loads do not

exceed the allowable stresses. In the ultimate-strength, or

plastic, design, the loads are multiplied by the load factors

to determine the ultimate loads and the fully stressed members

are required to resist various design combinations of these

ultimate loads[13].

A more rational approach to consideration of

stochasticity in structural parameters has resulted in the

development of the LRFD approach during the past decade.

3.1 General Discussion on LRFD codes

The load and resistance factor design criterion is

29 °



expressed by the following general formula:

_I_ _ _Yi Qi
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(3-1)

The left side of the formula relates to the resistance

(capacity) of the structure while the right side characterizes

the loading acting on it.

The resistance side of the design criterion consists of

the product CRn, in which R n is the "nominal resistance," and

is the "resistance factor." The nominal resistance is the

resistance computed according to a formula in a structural

code and it is based on the nominal material and cross-

sectional properties. The resistance factor ¢, which is always

less than unity, together with R. reflects the uncertainties

associated with R. The factor ¢ is dimension less and R n is a

generalized force: bending moment, axial force, or shear force

associated with a limit state of strength and serviceability.

Interaction equations, e.g., between axial force and bending,

may also be used to define Rn for appropriate limit states.

The loading side of the design criterion is the sum of

products, Yi Qi, in which Qi is the "mean load effect," and Yi

is the corresponding _load factor." Here Yi is dimensionless

and Qi is a generalized force (i.e., bending moment, axial

force or shear force) computed for the mean loads for which

the structure is to be designed. The y-factors reflect
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potential overloads and uncertainties inherent in the

calculation of the load effects. The summation sign in the

equation denotes the combination of load effects from

different load sources[13].

The LRFD codes were developed, based on first order

probabilistic design methods. In LRFD, the nominal resistance

always relates to a specific "limit state." Two classes of

limit states are pertinent to structural design: the _maximum

strength"(or _ultimate")limit state, and the _serviceability"

limit state. Violation of a strength limit state implies

"failure" in the sense that a clearly defined limit of

structural usefulness has been exceeded, but this does not

necessarily involve actual collapse. In case of structural

system with "compact" beams this means that a plastic

mechanism has formed. Serviceability limit states include

excessive deflection, excessive vibration, and premature

yielding or slip.

A first order probabilistic design procedure was used to

determine the values of _, R n, ¥ and i Q , during the

development of the code. This is simplified method that uses

only statistical parameters, i.e., means values and

coefficients of variation of relevant variables and a

relationship _ between them, called the _safety index."
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Probability-based LRFD criteria have been adopted in

Canada for hot-rolled and cold-formed steel structures, the

basic guidelines for European national codes have been

formulated, and research on development of similar procedures

is underway for reinforced concrete and wood structures.

Experience gained from one effort is transmitted to newer

projects, and the concepts of the applications of probability,

statistics, optimization, and decision theories have become

increasingly more sophisticated[13]. Thus the field of design

methodology research is very active and changes occur rapidly.

3.2 Selection of Model

The probabilistic design format used to develop the LRFD

criteria for steel structures is due to Cornell[14]. This

format was selected because of its simplicity and its ability

to treat all uncertainties in a design problem in a consistent

manner. The format is explained briefly in the following.

Structural safety is a function of resistance, R, of the

structure and of the load effect, Q, acting on it; R and Q are

random variables. An example of the definition of safety is

given in the Figure 3-1, where the frequency distribution of

the random variable of R-Q, called the safety margin, is shown

and survival is indicated by R-Q, called the safety margin, is
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shown and survival is indicated by R-Q > 0. The probability of

failure Pr of a structural element according to the

representation of Figure 3-1 is equal to

<1:%= P[(R-Q)< 01 (3-2)

An equivalent representation of structural safety is

shown in figure where the probability of failure is

Pv =P[ In(R/Q) < 0] (3-3)

The format according to the Figure 3-1 was adopted for

developing the LRFD criteria.

Safetymargin,R--_ Valueof In('R/Q)

(a) PROBABILISTICMODF..L. (b) OEFINITIONOF _FETY INOEX

Figure 3-1" Definitions of Structural Safety [12]

If the "standardized variate" U is introduced, in which



34

In(R/Q)-[ln(R/Q)].
U= (3-4)

O[m(IUQ)

where, [In(R/Q) ]m and OI.(R/Q)are the mean and standard deviation

of the natural logarithm of the ratio (R/Q), then from

equation 3-3, the probability of failure can be written as

given below

PF = P {U < -[ln(R/Q)]=/o_t_Q)}

= Fo { _[ln(R/Q)]m/OmvQ) } (3-5)

Here Fu is the cumulative distribution function of the

standardized variate U. The quantity [In(R/Q)]m/OInlR/Q) defines

the reliability of the element, thus it is called "safety

index," _. If the probability distribution of (R/Q) were

known, _ would directly indicate a value of the probability of

failure. In practice, the probability distribution of R/Q is

unknown and only the first two statistical moments of R and Q

are estimated. In the first-order probabilistic design method

used here, _ is only a relative measure of reliability; a

constant value of _ effectively fixes the reliability as a

constant for all similar structural elements.

The expression for the safety index _,

= [In0_Q)ldo_Q) (3-6)
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can be simplified by using first-order probability theory into

_ = [In(Rm/Qm)]/_(V2+V$) (3 -7)

in which R_ and _ are the mean values of the resistance and

the load effect, and V_ and QV are the corresponding

coefficients of variation[12].

3.3 Load Combinations

Most load effects are random functions of time. The

following are some important load combinations to be studied:

i. Dead load + lifetime maximum live load

2. Dead load + sustained live load +lifetime max

wind load

3. Dead load + lifetime max live load + daily max

wind load

4. Lifetime max wind load - dead load

5. Dead load + lifetime max snow load[13].

An examination of these loads follows.

3.3.1 Live Load - Statistical information on live loads is

usually obtained from load surveys that give the live loads in

the particular buildings surveyed at the times the surveys

were made. From the load combination enumerated earlier, it is
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seen that the distribution of the lifetime maximum live load

is also needed. Pier and Cornell[15] have modeled the live

load as consisting of the superposition of two parts: The

sustained live load, which remains on the floor for a

relatively long time until an occupancy change occurs, and the

transient live load, which occurs infrequently but with a

relatively high intensity and short duration. The sustained

load includes furniture and normal working personnel. The

transient live load may be caused by people in a room. Peir

has proposed models to derive the statistics of the lifetime

maximum sustained load and of the transient live load. Using

the live load models of Pier and live load survey data of

Mitchell and Woodgate[16], McGuire and Cornell[17] have

derived the statistics of lifetime maximum live load.

3.3.2 Wind Load. - There are three random variables of

interest in case of wind loads: The daily maximum, the annual

maximum, and the lifetime maximum wind load. Meteorological

data are available to derive the distributions of the daily

maximum and of the annual maximum wind speeds throughout the

United States. The lifetime maximum wind speed is

approximately derived as the maximum of n-identically

distributed and statistically independent random variables

representing the annual maximum values, where n is the
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lifetime of the structure in years. The mean and the

coefficient of variation of the wind load(daily maximum,

annual maximum, or lifetime maximum) are obtained taking into

account the uncertainties in the dynamic characteristics of

wind and the structure.

An analysis of 13 locations in the continental United

States is given in the table 3-1 for a l-yr period, which

lists the location, the mean fastest mile daily wind speed, in

miles per hour(V30m), the corresponding 50-yr ANSI wind speed

for the same location(V_s_), the factor (_0_/V_sl)2 by which

ANSI 50-yr wind pressure is multiplied to obtain the mean load

intensity, and the coefficient of variation of the daily wind

speed, V_[15] .



TABLE 3-1 Maximum Daily Wind Statistics

Location

Boston

Denver

Minneapolis

Chicago

St.Louis

Kansas City

Salt Lake C

Washington

Dallas

Atlanta

Pittsburgh

Seattle

New York C.

V30_, miles

per hour

21

19

18

18

18

18

18

17

17

17

16

16

14

V_sI, miles

per hour

90

8O

75

8O

70

70

8O

75

70

8O

70

8O

8O

(V30_/V_sl) 2

0.05

0.06

0.06

0.05

0.07

0.06

0.05

0.05

0.06

0.04

0.05

0.04

0.03
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VVD

0.32

0.38

0.33

0.30

0.37

0.39

0.39

0.36

0.35

0.38

0.33

0.37

0.32

3.3.3 Load Factors- The purpose of load factors is to

increase the loads to account for the uncertainties involved

in estimating the magnitudes of dead or live loads. The usual

load combinations to be considered are given below[19].



i. U = 1.4D

2. U = 1.2D + 1.6L + 0.5(L r or S or R)

3. U = 1.2D + 1.6(Lror S or R) + (0.5L or O.8W)

4. U = 1.2D + 1.3W + 0.5L + 0.5(Lr or S or R)

5. U = 1.2D + 1.5E + (0.SL or O.2S)

6. U = 0.9D - (I.3W or 1.5E)

where, U = ultimate loads

D = Dead loads

L = Live loads

W = Wind loads

Lr = roof live loads

S = snow loads

R = rainwater or ice load

E = Earthquake load
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3.4 Bending Resistance of Steel Beams

The plastic range represents the optimum capacity of the

beam. Beams in this region are often described as compact

beams[20]. In this range the plastic moment F_ = _ Z can be

reached or exceeded, and this moment-level can be maintained

for a large enough rotation so that inelastic force

redistribution can take place and finally a mechanism can

form. While in the elastic range of lateral-torsional buckling



40

the situation is clear, i.e., the member buckled or it is

stable, the factors affecting the behavior in the plastic

range are complex and intricately interrelated. Local flange,

local web, and lateral-torsional distortions interact and they

tend to build up gradually rather than form suddenly. Strain

hardening on the one side and instability on the other side

work against each other and they tend to balance out to give

M=_ at the critical length Lp [21].

While much is known experimentally in the plastic range

about the relationship of unbraced length and flange and web

width-thickness ratios to rotation capacity, no generally

satisfactory analysis that recognizes the complex

interrelationships has yet been presented. Indeed, even if

such a relationship did exist, its usefulness in design office

situations would be questionable. Requiring designers to

determine the required amount of rotation capacity to permit

a desired level of moment redistribution would not be

practical. The process is difficult, time consuming, and

unreliable. Strain hardening significantly reduces the

required rotation capacities based on ideal hinge behavior,

i.e., M_ax = Mp[19].

Studies have been made on rotation capacity requirements

of some general structures. These studies show that for
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practical structures, the required rotation capacity is

small (less than two) . These are usually in extreme

structures(single-story frames with very steep gables), or in

zones of high moment gradient, where the ideal assumptions are

invalid. In addition, these cases usually show that at a load

just a few percent below the maximum, the requirements are

greatly diminished. Current rules in plastic design are not

based on any consistent rotation capacity requirements. The

table below shows the statistical derivations of several tests

on beams in plastic range.

TABLE 3-2 Statistical Data on Beam Tests in Plastic Range

Type of member

Statically
determinate
beams under

uniform moment

Statically
determinate
beams under

moment
gradient

Statically
indeterminate

beams and
simple frames

Number of
tests

33

43

41

(Test/predi ction )

1.02

1.24

1.06

Vp

0.06

0.I0

0.07



3.5 Properties of Steel

The importance of material

42

statistics may be, and is

often, overshadowed by the uncertainties inherent in design.

Required statistics of structural steel are not generally

available for common grades of structural steel because steel

specifications and material specifications work with specified

minimum values. Examining the existing literature on material

properties of structural steel is, therefore, necessary and to

obtain an estimate of the properties needed. Characteristic

and representative sets of data were examined and estimates

were made of the mean values and the coefficients of variation

for tentative use. The principal material property affecting

the resistance of a steel structure is the yield stress[22].

The values for use as proposed by T.V.Galambos et al is given

in the table 3-3 overleaf.



TABLE 3- 3 Summary of Material Properties Used in LRFD

Criteria
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Material Property

Modulus of
elasticity in

tension

Modulus of
elasticity in

compression

Modulus of
elasticity in shear

Poisson's ratio

Yield stress in
flanges

Yield stress in webs

Yield stress in
shear

Mean Value, in kips
per square inch

29000

29000

11200

Coefficient of
variation

0.06

0.06

0.06

0.03

0.i0

0.ii

0.I0

3.6 Variation of Safety Index

The value of safety index may be varied to account for

the importance of the structure. If the structure is

important(like public buildings, national monuments, places of

worship, industries etc.), then they can be designed for a

higher reliability factor, to take care of the stochasticity
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of loading in these buildings. There are some structures in

which failure of one or a few critical elements may result in

the total loss of the structure("weakest link" type

structures)in contrast to ductile or continuous structures

(_parallel" type structures).

Optimal levels of reliability for different types of

structures could be obtained from an expected total cost

optimization process. It could be decided, that _=3.0 in

ordinary buildings, _=4.5 for very important buildings, and

_=2.5 for temporary structures. It is possible to incorporate

the statistical correlation between cross sections and between

members and failure modes by suitably varying the value of the

safety index 9110]. The LRFD formulation is versatile enough

to incorporate these future developments in probabilistic

design.

3.7 Comments on LRFD codes

The simple structures used by the LRFD approach to

calibrate the load and resistance factors have closed form

solutions, i.e., the response in these structures is available

as an analytical expression in terms of the basic structural

parameters. Therefore the limit state is also analytically

available, making it easy to estimate reliability. However,
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for most realistic structures the response is not available as

a closed-form solution; it can only be evaluated through

numerical procedures such as finite element analysis.

Therefore, more complicated numerical procedures than those

used in LRFD are needed to estimate the reliability of members

in such structures.

In the LRFD approach, however, the individual members in

complicated structures are designed using the same load and

resistance factors that were derived based upon the

reliability analysis of simple structures. The use of isolated

simple structures to derive safety factors is related to the

basic design philosophy common to all codified design

procedures. There are several advantages to the isolated-

member approach: (i) In deterministic design methods that use

factors of safety, preparing detailed requirements for each

structural configuration is not practical; (2) the

characteristics of the individual members and connections

themselves are independent of the framework; and finally, (3)

most research has been devoted to the study of such elements,

and theoretical and experimental verification of their

performance is readily available. Nevertheless, the

performance of a member is directly dependent on its location

in a structural configuration and its relationship or
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connection with other members in the framework. Such

dependence is not restricted to the computation of load

effects through a deterministic analysis of the structure, but

extends to the probabilistic characteristics of all the

parameters of the structure. Only a probabilistic structural

analysis of the entire structure can account for such

influence and accordingly determine the risk or reliability of

any individual member, thus enabling an improved approach to

reliability-based design.

An important objective of the reliability-based design

methods such as LRFD is to reduce the scatter of nonuniform

risk levels produced under various load combinations by the

conventional design methods. As described in the AISC LRFD

specification (Manual 1986), the reliability indices inherent

in the 1978 AISC specification (Manual 1978), when evaluated

under different load combinations and for various tributary

areas of typical members, show a considerable range of

variation. The LRFD approach seeks to narrow this range of

variation of _ values by specifying several "target" _ values

and selecting multiple load and resistance factors to meet

these targets. Since the computation of _ values in this

approach is based on direct simulation using simple, isolated

structural elements, an improved analysis of a realistic
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structure would reveal that, even for the same load

combination and the same limit state, there is considerable

variation in the _ values among the different members of the

structure. Thus, there is further scope for improvement in the

achievement of uniform risk by reducing the variation of

values among different members in a structure, within the

limitations of practical design. This is also advantageous

from the point of view of structural optimization as in weight

minimization, since uniform risk among members implies a

balanced distribution of weight.

A third aspect of the LRFD approach, which needs closer

examination and possible improvement, is the consideration of

the statistical correlation among the basic structural

variables. The load and resistance factors in the LRFD

approach were derived assuming statistical independence of

variables. This may be reasonable for isolated simple members,

which do not have too many variables, and assumption of lack

of correlation may not significantly affect the determination

of the reliability index. However, for members in structures

such as frames, correlations among the random variables may

have a significant effect, and so need investigation.

The key to successful resolution of all these issues is

the ability to perform reliability analysis of complicated



48

structures for which the response is not available as a

closed-form solution in terms of the input variables, except

in an algorithmic form such as finite-element code, like

"NESSUS ."



CHAPTER IV

SYSTEM RELIABILITY ANALYSIS OF STEEL FRAMES

4.1 Reliability Analysis of Complicated Structures

Three types of solution strategies are possible for the

reliability analysis of complicated structures; they are:

(1)Direct simulation (2)approximation of the performance

function by a polynomial; and (3)the stochastic finite

element method[4].

The stochastic finite element method uses a more direct

approach to the reliability analysis of structures. Starting

with second-order statistics of the basic random variables, it

keeps account of the variation of the quantities computed at

every step of the deterministic analysis with respect to the

basic random variables, and thus makes it possible to compute

the statistics of response or the reliability for any limit

state.

For structures whose limit state is not available in

closed form, Wu(1984) suggested the use of a simple, easily

constructed second-degree polynomial that approximates the

limit state in the neighborhood of the design point. Repeated

deterministic analysis at selected points in the neighborhood

and subsequent regression analysis are used to achieve this

49
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objective. Then the Rackwitz-Fiessler algorithm is used to

estimate the reliability index, through the solution of the

approximate limit-state equation.

Direct simulation, though robust is expensive. A large

number of deterministic runs are required to compute the

probability of failure, which is generally required to be very

low in conventional civil engineering structures. The

efficiency of the simulation can be improved by reducing the

variance of the estimated probability of failure, which uses

the same execution times and storage requirements without

disturbing its expected value. Several such variance reduction

techniques have been proposed and used in structural

reliability analysis, e.g., importance sampling method. These

variance-reduction techniques can also be combined further to

increase the efficiency of the simulation.

This chapter develops a method to quantify the effect of

different types of collapse mechanisms of a structure under

cumulative loading with the help of numerical examples. The

purpose of the numerical examples is twofold: First, to

illustrate reliability analysis of steel frames for the

performance functions presented later in this chapter; and

second, to examine steel frames designed using the LRFD

approach and determine whether the target reliabilities of the
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structural configuration.

considering the
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overall

4.2 Statistical Information

For the reliability analysis, a probabilistic description

of the variables is necessary. The stochastic variation of

loads, material properties, sectional properties have been

extensively studied in the earlier chapter; according to

existing literature. Ellingwood et ai.(1980) provided detailed

statistical information, including the type of distribution,

about some of these parameters.

The dead load and all the resistance variables have been

described as lognormal variables; wind load and the live load

were described as type I extreme value variables.

4.3 Statement of the Numerical Example

Examine several steel structures, designed using the LRFD

approach, without changing the structural configuration, but

by varying the structural geometry and the loads. Determine

whether the target system reliabilities, as stated by the

codes are reached. Interpret the results obtained.
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4.4 Analysis of the Problem

One basic structural configuration for the plane steel

frame is chosen. Using the same structural configuration, the

structural geometry and the loads were varied to give sixteen

different structures were obtained for analysis. The nominal

values of the dead loads, live loads, wind loads are

calculated to the best possible alternative, with the help of

UBC codes[22] (1988). These values are tabulated for different

runs, in table 4-1.

4.4.1 Assumptions in analysis

The following assumptions were made in the analysis:

I. Elasto-plastic framed structures are used. If a moment

exceeds the moment capacity at a section, a plastic hinge

occurs and an artificial moment of magnitude equal to its

resistant moment capacity is imposed at this section.

Component failure due to buckling and violation of

displacement constraints is not considered.

2. The structural uncertainties are represented by

considering only the moment capacities as random variables.

3. Geometrical second-order and shear effects are

neglected. The effect of axial forces on the reduction of

moment capacities are also neglected.
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4. The order of loads and loading paths are not

considered.

These assumptions are often used in time-invariant system

reliability analyses for ductile frame structures.

4.5 Applied Plastic Design

Until recent years most steel beams were designed based

on elastic theory. The maximum load that a structure could

support was assumed to equal the load that first caused a

stress somewhere in the structure to equal the yield stress

of the material. The members were designed so that the

computed bending stresses for service loads did not exceed the

design stress. Engineering structures have been designed for

many decades by this method with satisfactory results. The

design profession, however, has long been aware that ductile

members do not fail until a great deal of yielding occurs

after the yield stress is first reached. This means that such

members have greater margins of safety against collapse than

the elastic theory seems to indicate.

This sums up the basis of the plastic theory. The theory

is that those parts of the structure stressed to the yield

point cannot resist additional stresses. They instead will

yield the amount required to permit the extra load or stresses
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to be transferred to the other parts of the structure where

the stresses are below the yield stress and thus in elastic

range and able to resist increased stresses. Plasticity can be

said to serve the purpose of equalizing stresses in cases of

an overload.

A statically determinate beam will fail if one plastic

hinge develops. For a statically indeterminate structure to

fail it is necessary for more than one plastic hinge to form.

The number of plastic hinges required for failure of

statically indeterminate structures will be shown to vary from

structure to structure, but may never be less than two.

One very satisfactory method used for plastic analysis is

the virtual-work method. The structure in question is assumed

to be loaded to its nominal capacity, Mn, and is then assumed

to deflect through a small additional displacement after the

ultimate load is reached. The work performed by external loads

during this displacement is equated to the internal work

absorbed by the hinges. For this discussion the small-angle

theory is used. By this theory the sine of a small angle

equals the tangent of that angle and equals the same angle

expressed in radians. We can use these values interchangeably

because the small displacements produce extremely small

rotations or angles[19].
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This theory is the basis, of formulation of limit state

functions in the analysis of the structures under

consideration in the problem.

4.6 Design of Structures

A method is proposed to design the structures, in which,

the objective is to estimate the element reliability under

material nonlinearity represented by plastic hinge and not

system reliability. The emphasis is on identifying the

important linear segments of the nonlinear element reliability

limit state through this procedure. In terms of

implementation, the proposed method imposes a group of plastic

hinges on the structure, instead of imposing only one hinge at

each step as in current system reliability methods, as

developed by Xiao, et al[7]. This grouped imposition is an

important step that saves much computational effort for large

structures since the number of structural reanalyses is

greatly reduced. Particular group of plastic hinges, which

will produce significant change, is isolated.

4.6.1 Stepwise Design Procedure

The algorithmic design procedure can be clearly seen in

the flow chart as seen in Figure 4-1.
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The following steps were incorporated to design the structures

under consideration:

Step I - All the initial nominal values of the dead load D,

live load L, and wind load W, are selected based on

the UBC building codes, taking Nashville, TN, as the

location center. The calculations* yielded the

nominal values given in the table below.

TABLE 4-1 NOMINAL VALUES OF LOADS

Variable Nominal Value

D - Dead Load 4.0 kips

L - Live Load 7.5 kips

W - Wind Load 2.0 kips

The basic structure to be analyzed is seen in Figure

4-2, with dimensions and loading patterns. The live

load and the dead load are applied at the center of

each beam, with the wind load point application at

the node of the column-beam junction. Based on this

basic structural configuration, fifteen variations

physically possible with variations in wind load,
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vertical dead and live load, horizontal bay

dimensions and vertical height dimensions, were

thought of; thus making a total of sixteen

structures to be analyzed by the proposed method.

The values of the wind load, live load, dead

load, bay dimension, height dimensions are given in

table 4-2 below for all 16 cases.
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Case # Dead load

(D); kips

Case 1 4.0

Case 2 4.0

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

Case 9

Case i0

Case ii

4.0

Live load

(L); kips

7.5

7.5

7.5

Wind load

(W) ; kips

2.0

4.0

6.0

Bay size

(B), feet

18.0

18.0

18.0

Height

(H), feet

I0.0

I0.0

i0.0

4.0 7.5 8.0 18.0 i0.0

6.0 i0.0 2.0 18.0 i0.0

8.0 12.5 2.0 18.0 I0.0

i0.0 15.0 2.0 18.0 i0.0

12.0

4.0

4.0

4.0

17.5 2.0 18.0 I0.0

7.5 2.0 18.0 12.0

7.5 2.0 18.0 14.0

7.5 2.0 18.0 16.0

7.5 2.0 18.0 18.0

7.5 2.0 20.0 i0.0

7.5 2.0 22.0 I0.0

7.5 2.0 24.0 i0.0

2.0

Case 12 4.0

Case 13 4.0

26.0

Case 14

Case 15

4.0

4.0

4.0Case 16 7.5 I0.0

Step 2 - The next step was to conduct the force study of all

the 16 different structures. This was done with the

aid of a structural finite element software, STAAD -
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III, developed by Research Engineers Inc. The

loading cases analyzed in this study according to

LRFD[2] formulae were :

U = 1.4D

U = 1.2D + 1.6L

U = 1.2D + 0.5L + 1.3W

--- LRFD A4-1 (4-I)

--- LRFD A4-2 (4-2)

--- LRFD A4-4 (4-3)

The outputs of the individual member forces were

studied, with moment in the Z-direction being the

prime governing factor as discussed in the

assumption of analysis of the problem. The sections

of maximum moment isolated, ford, for use in the next

step of the design process that would be plastic

design based on LRFD codes to design each member of

all the 16 structures.

Step 3 - A computer program* was developed on the lognormal

distribution for _, as is discussed in Chapter III.

The formula follows:

_ = [In(R,,,/Q,,,)]_(V_+V_) (4-.4)

Where,

R_= the mean resistance



Q_ = the mean load effects,

which in our design process would be the plastic

moment of the beam(including the effect of _)and the

maximum moment induced in the beam derived from the

force study. The target _ and ¢ used for the columns

and beams are given in the table 4-3 below:

TABLE 4-3 TARGET VALUES OF _ AND ¢ FOR ELEMENTS

COLUMNS

BEAMS

2.5 0.85

3.0 0.90

V r and _ are the coefficients of variation of the

plastic moment of the beam and the moment induced.

Both of these coefficients of variations are

numerically used as 0.I0 as discussed in Chapter

III.

After using the program developed, all structures

were designed for element reliabilities desired.

The results of the design are tabulated in table

4-4.

* listed in APPENDIX _A'

6!
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CASE #

BEAM SECTION

CB)

EXTERNAL

COLUMNSECTION

(Ci)

INTERNAL

COLUMNSECTION

(C2)

WSX28 WSXI0 W6X9

WSX28 WSXI0 W6XI2

W8X28 WSXI5 WSXI5

4 W8X28 W8XI8 WIOXI5

5 WIOX33 WIOXI2 W6X9

WI2X35 WI0XI5 W6X9

WI0X49 W6X25 W6X9

8 WI2XS0 W8X24 W6X9

9 WIOX22 W6XI2 W6X9

I0

ii

12

13

14

15

16

WI2X22 W6XI2 W6X9

WI2X22 W6XI2 W4XI3

WI2X22 W8XI5 W6XI2

W8X31 W6XI5 W6X9

WI4X22 W6XI6 W6X9

WI0X30 W8XI5 W6X9

W6X9WIOX33 WIOXI5

The W-sections chosen for design are in accordance

with the LRFD, AISC specifications. It should be

noted that some sections are not practically
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available in the market, but are listed in the

codes. They are solely selected for theoretical

purposes of close simulation to design conditions.

Step 4 - A complete indeterminacy study was carried out of

the structures. The following results were deduced:

Numberofpossiblehinges _rmed =10

Numberofredundancies = 6

Number of independent mechanisms = 4

Out of these 4 failure mechanisms, 3 critical

mechanisms are identified-(1) beam mechanism; (2)

column mechanism; (3) combined mechanism.

Step 5 - The next step was the formulation of the 3 g-

functions based on the virtual work study[23] of all

the 3 mechanisms. The rotations, at the end of the

plastic hinges are equal. The Figure 4-3 shows the

different modes of failure possible in the

structure.
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Mode 1 - Beam Mechanism

Mode 2 - Column Mechanism

Mode 3 - Combined Mechanism

Note : ALl circles indicate the formation and location of possile pl_tic hinges.

Figure 4-3 • Significant Modes of Failure in structure.
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The external work performed is always the

product of the load and the average deflection of

the mechanism. The average deflection equals one-

half the deflection at the center or dominating

plastic hinge. The internal work is the sum of _at

each plastic hinge times the angle through which it

works. The resulting expressions for the g-functions

which is a result of difference between the internal

resistance(work) and the external work performed.

They are formulated below:

1. BEAM MECHANISM:

gl= 8.0*_b- (D+L)*B

2. COLUMN MECHANISM:

g2= (4.0*Mpc1+2.0*Mpc2) - W*H

3. COMBINED MECHANISM:

g3= (2.0*Mpc1+3.0"_c2+12.0*_b) - (W*H+B* (D+L))

Step 6 - This step is explicitly explained in Chapter V,

which concentrates on the formation of the fault

tree risk analysis formation and discussion of the

results.



CHAPTER V

SYSTEMS RISK ANALYSIS AND RESULTS

System risk analysis is carried out using _NESSUS" by the

development of fault trees that combine different modes of

failure in the system.

5.1 Fault Tree Analysis

In calculating system reliability, it is important to

include the probabilistic dependencies between multiple

component failures, or between different failure modes.

Failure to do so could result in significant errors. Fault

tree analysis is a commonly used tool in risk assessment. A

Fault tree is a mathematical construction of assumed component

failure modes (bottom events) linked in series or parallel

leading to a top event, which denotes the total system

failure. A fault tree diagram essentially decomposes the main

failure event (top event) into unions and intersections of

subevents or combination of subevents. The decomposition

continues until the probabilities of the subevents can be

evaluated as single mode failure probabilities. The

probabilistic fault-tree analysis is based on the limit state

definition of the bottom events. Thus, one requirement for

66
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system risk assessment is to compute failure function of each

bottom event. Each bottom event is defined by a close form

equation.

A fault-tree has three major characteristics: bottom

events, combination gates and the connectivity between the

bottom events and the gates. The system risk assessment is

limited to AND and OR gates. The OR gate implies that the

output fault event is the union of subevents. The AND gate

signifies that the output fault event is the intersection of

the subevents. The different steps involved in the application

of the fault-tree analysis method can be summarized as

follows[24].

i. Development of a fault tree to represent the

structural system.

2. Construction of an approximate performance function

for each bottom event.

3. Determination of a dominant sampling sequence for all

bottom events.

4. Calculation of the system reliability using

Adaptive Importance Sampling method.

To illustrate the Fault-tree analysis, consider a simple

example consisting of two failure modes: yielding and
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excessive displacement. Two failure functions can be expressed

as,

g_ = R (Yield strength) - S (Stress)

g2 = D (Allowable displacement) - d (displacement)

Failure occurs if [g1<0] or _g <0]. Using standard

probability notations, the system probability of failure is:

Pf = P[(g, <0)u(g 2<0)] (5-3)

In general,

Pf = P[g_<0]+P[g2<0]-P[(g,<0)n(g2<0)] = P,+P2 -P,2 (5-4)

In general, P12 ranges from 0 to the smaller value

of PI and P2 therefore, Pe ranges from [P_ +P2] to P2( assuming

P2 >P_)- Hence, by assuming independent events, the error

ranges from -PIP2 to PI(I-P2).

In application to the project, one OR gate is considered

with three bottom events. The three bottom events represent

the three failure modes of the structure. The representation

of Fault-tree with three failure modes is shown in Figure 5-1.
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The Fault-tree analysis is carried out by two methods. They

are:

i. Adaptive importance sampling method.

2. Standard Monte Carlo sampling method.

5.1.I Adaptive Importance sampling method

Adaptive Importance Sampling is different from

traditional importance sampling methods because of its ability

to adjust automatically and by that reduce the sampling space.

Because of this attribute, adaptive importance sampling method

is highly efficient and accurate alternative for probabilistic

analysis.

Two options are available for selecting the sampling
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boundaries. The first order adaptive sampling method uses

hyperplanes, and the second-order adaptive sampling method

uses parabolic surfaces. Both surfaces are constructed in the

u-space and use the most probable point to define the

beginning sample space. In general sampling space can be

adjusted by increasing or decreasing the curvatures of the

parabolic surface until there are no more failure points in

the final sampling space. In the first order-based method,

only the distance to the hyperplane is changed. In the second-

order-based method, the curvature of the sampling boundary is

updated first, then the final surface is shifted toward the

origin[12].

5.1.2 Monte Carlo Sampling method

Monte Carlo sampling method is a way of generating

information for a simulation when events occur in a random

way. It uses unrestricted random sampling (it selects items

from a population so that each item in the population has an

equal probability of being selected) in a computer simulation

in which the results are run off repeatedly to develop

statistically reliable answers. A sample from a Monte Carlo

simulation is similar to a sample of experimental

observations. Therefore, the results of Monte Carlo
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simulations may be treated statistically. Monte Carlo methods

are useful because they can handle very complex models, are

guaranteed to work, and are exact in the limit as the number

of samples becomes large. The disadvantage is that a very

large number of simulations may be necessary[25].

5.2 Structural System Reliability using NESSUS

System reliability considers failure at multiple

locations, multiple failure modes, multiple components and

combinations of all three. System reliability in NESSUS is

currently addressed by a probabilistic fault tree

analysis(PFTA) method. The driver module for system

reliability is the SRA module with the PFTA methodology in the

FPI module. The procedure implemented is intended to be

accurate and efficient and build off the previous capabilities

of NESSUS.

The user defines system failure through the fault tree by

defining the bottom events and their combination with _AND"

and nOR" gates. Each bottom event considers a single failure,

i.e., component reliability, and is defined through a finite

element model and performance function. NESSUS will compute

the reliability of each bottom event and a polynomial

approximation, called a failure function, to the structural
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response at the most probable point(MPP) using the AMV+

algorithm. The failure functions are then combined according

to the fault tree[26]. System reliability is then computed

using an adaptive importance sampling method. The adaptive

importance sampling in this module has two features. First,

the sampling region is focussed on the most important region

where it has the highest probability of failure, and second,

the sampling region is not predetermined. Instead, the

sampling region is gradually increased by deforming the

sampling boundary until the sampling region fully covers the

failure region sufficiently. When the sampling region fully

covers the failure region, the probability solution will

converge, indicating that no more deformation is required[27].

There are several advantages to this approach. Because

the failure functions are used, not just the probability of

failure of each bottom event, the method can account for

correlation between bottom events. The preexisting NESSUS

capabilities for component reliability and failure function

for each bottom event. In addition,

sampling is typically an order or

conventional Monte Carlo.

adaptive importance

more faster than

The PFTA procedure implemented in NESSUS is being

investigated for use with progressive fracture failure mode.
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The PFTA method uses the failure function about the MPP

for each bottom event not just the probabilities.

A summary of the system probalilities of failure and the

respective safety indices for all the 16 cases are given in

the table below

TABLE 5-1 PROBABILITY AND SAFETY INDEX RESULTS

Case # Probability of

Failure (Pf)

Safety Index (_)

Case 1 0.15728E-07 5.534

Case 2 0.14167E-03 3.630

Case 3 0.83901E-04 3.763

Case 4 0.21916E-03 3.516

Case 5 0.56805E-I0 6.448

Case 6 0.54563E-12 7.118

Case 7 0.27913E-12 7.210

Case 8 0.67462E-13 7.401

Case 9 0.86963E-06 4.782

Case i0 0.85838E-05 4.299

Case ii 0.47044E-04 3.905

Case 12 0.51779E-06 4.885

Case 13 0.97542E-09 6.002

Case 14 0.21091E-09 6.246
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Case 16
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0.15191E-I0 6.645

0.22340E-II 6.922

Considering the results, which we can even see in a

graphical form as seen in figure 5-2, there is clearly a

difference between the safety indices of the four different

variations tried in the structural loadings and geometries,

and we see that the system safety index is consistently higher

than the target. This can be seen in the table 5-2 below;

TABLE 5-2 SAFETY INDEX VARIATIONS

CASE # AVERAGE SAFETY INDEX

(_AvG)

TARGET RELIABILITY

INDEX (_T_GET)

CASE 1 - CASE 4 4.111 3.0

CASE 5 - CASE 8 7.044 3.0

CASE 9 - CASE 12 4.468 3.0

CASE 13 - CASE 16 6.454 3.0
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These results are obtained by using the same LRFD

criteria used for developing the codes, using first order

probabilistic design. After these results were obtained, a

sensitivity analysis was done for the first case, taking it as

a representative structural configuration. The results of

which are graphically represented in fig 5-3 to fig 5-5. From

these graphs, we conclude that the live load is the most

sensitive variable in the beam collapse mechanism and the

combined collapse mechanism, and the plastic moment of the

external columns is the most sensitive variable in the column

collapse mechanism.

It is decided to vary, the coefficients of variations of

the vertical live load, plastic moment of the external column

section, horizontal wind load, beam section; to study the

effect of these variations of individual limit state variables

on the safety index of the system. The results are depicted in

fig 5-6 to fig 5-9. It is worth noting from fig 5-6, that even

though the live load is the most sensitive parameter for two

limit states, it has no effect at all on the system

reliability. However, the plastic moment of the external

columns, which is the most sensitive parameter for one limit

state, affects the system reliability(safety index)

considerably with change in its statistics. This means that
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the plastic moment of the external column is the most critical

parameter in the system. It also proves that even though a

particular variable is sensitive in a single limit state, it

may not be the most critical when system effects are

accounted.

5.4 Observations

The main objective of this project - the validation of

LRFD for actual structures - is achieved by comparing the

reliability indices(computed using NESSUS) for the various

limit states in a plane frame structure, with the target

values used in LRFD. As seen in tables tabulate the NESSUS-

computed _ values for the structures and also the target B

values show that the former is consistently higher.
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In cases 1-4, where, the design is determined by the

variation of horizontal wind load, the _Avc is 4.111. In cases

5-8 the design is dominated by the variations in vertical

load, the _AVG is 7.044, which is more than twice the target _.

The dominating factor in the design decision is variations in

height of the structure, here the _Aw is 4.468. Finally the

rest of the cases are dominated by change in bay dimensions of

the structure, where the _AVG is 6.454.

The NESSUS approach used here to estimate the system

reliabilities designed according to LRFD differs from the

latter in two respects: The effect of all structural variables

is considered while estimating the reliability index for any

particular case of the structural configuration whereas the

LRFD method deals with the reliability of isolated members. In

the approach described in this project, correlations are

assumed between some random variables. Apparently, the load

and resistance factors used by the LRFD approach are

conservative, resulting in higher reliability of structures

than the target reliabilities. The use of _standard" design

situations such as simple beams, centrally loaded columns,

tensile members, etc. to derive the load and resistance

factors appears to have resulted in a conservative design for

more complicated situations such as frames.
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There is no appreciable effect of correlations between

sectional properties on the reliability index. This is not

surprising, since sectional properties show very little random

variation(coefficient of variation is 0.i), whereas the

largest variations are in the loading variables. Therefore, if

there are any correlations among the load variables, it is

possible that these might be more significant.

If the proposed method, can give system structural

reliability results to certain degree of accuracy, it is

possible to use this method to formulate a procedure or

relationship for optimum structural strength, ensuring uniform

risk among different structural configurations. It is also,

possible in the near future to relate the structural system

reliabilities to the element reliability.

However, it appears reasonable to account for the wind

loading and enhance the value of yield stress. Also, it can be

deduced that the two members are in two different

configurations; therefore the combined effects of the random

variables are different, altering the limit states and their

distances from the origin. The observations also show that the

reliability of a member is highly influenced by the structural

configuration and that considering the effects of all the

random variables is important.



CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH SUGGESTIONS

6.1 Conclusions

The study in this project covered the estimation of

structural reliability under cumulative damage of single

storey frame structures. The central idea was efficiently to

impose the damage through a grouping operation, by exploiting

the statistical correlations between modes of failures or by

considering the amount of accumulated damage. Also it was

sought to validate the load and resistance factors used in

LRFD. The specific contribution of each finding is summarized

and concluded as follows:

The validation process involved comparison of the

reliability levels achieved by the actual structure to the

target reliability levels set up according to the LRFD

criteria. For numerical examples presented in this project,

it is observed that the values of safety indices in the

actual structure are higher than their target values. It is

clearly seen from the fig 5-2, that if the framed structures

are designed according to the LRFD format, it leads to a

higher safety index than is desired. This helps in concluding

85
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that the structures designed with this method are

conservative. Furthermore, the statistical correlations

between the sectional properties of different members are

observed to have an insignificant effect on the effect on the

system reliability. The location of a member in a structural

configuration appears to be much more significant.

The LRFD method is based on the reliability analysis of

simple, isolated members. Therefore, it does not consider the

effect of the configuration on the stochastic response or

reliability of a particular member; nor does it include the

statistical correlations among all random variables of a

structure. Using a finite element software like NESSUS offers

the means to consider these factors and to estimate directly

the reliability of the actual structural configuration.

Therefore, this method can be used for a comprehensive

validation of the LRFD approach, considering many different

design situations. It is also possible to conduct sensitivity

studies and compare the relative influence of various random

parameters on the reliability.

Finally the occurrence of non-uniform safety indices

among different structural transformations, suggests that an

approach with the assignment of sizes of critical members in

each design group should be followed, based on the reliability
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of the overall structure or safety index of the overall

structure.

many

6.2 Suggestions for Future Research

Based on the results of the present study, the following

topics may be addressed in future research:

i. There is a need to use these results and similarly of

different structural configurations to determine the

system affected element-reliability. In other words, the

design factors may be derived for the system affected element

reliability.

2. The proposed study gives a very approximate estimation

of system reliability under multiple time varying loads. The

incorporation of the geometry (dimensions) of the structure as

random variables would lead to a better result.

3. The component resistances are assumed to be time-

invariant. Practically the resistances are time varying due

to aging, material deterioration etc. Fu and Moses evaluated

the time dependent system reliability for a simple parallel

system by updating the probability distribution of the element

resistances at time t and using them to estimate system

reliability at this time. However, the inclusion of time

variant resistances in the estimation of system reliability
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for a practical structure remains an important research topic.
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_HIS PROGRAM CALCULATES THE REQUIRED MEAN RESISTANCE ; GIVEN THE

_ETA VALUE AND THE LOADING EFFECT WITH THE COEFFICIENTS OF VARIATIONS

)F THE RESISTANCE AND LOAD EFFECTS.

-NITISH BERI

26TH SEPT 95

]CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

IMPLICIT REAL*8 (A-H,O-Z)

WRITE (* *) ' INPUT THE VALUE OF THE INDUCED MOMENT' (KIP-FT) '!

READ(* *)R

_'_"_(* *)' INPUT THE VALUE OF C O.V OF THE MOMENT:'

READ(* *)Vrl

OPEN (UNIT=9, FILE=' LNB. OUT' ,STATUS= 'UNKNOWN' )

WRITE(* *)' INPUT THE VALUE OF PLASTIC MOMENT OF SECTION:'

READ(*, *)Q

WRITE(* *) ' INPUT THE VALUE OF C O.V OF THE PLASTIC MOMENT:'F

READ(*, *)Vq

OPEN (UNIT=9, FILE= 'LNB. OUT', STATUS= 'UNKNOWN' )

BETA1 = (LOG (R/Q)) / ((Vr**2+Vq**2) **0.5)

WRITE(* *) '

WRITE(* *)' BETA = ' BETA1I

WRITE(* *) 'f

WRITE(* *) ' IS THIS VALUE ACCEPTABLE _ (I=YES, 0=NO) '!

RE/d9 (*, * )NUMI

IF (NUMI .EQ. 1 •0) THEN

GOTO 20

ELSE

GOTO 10

ENDIF

WRITE (9, *)**************************************************

WRITE (9,*)' RESULTS FOR THE BETA AND RESISTANCES OF MEMBER

WRITE(9,*) ' -NITISH BERI '

WRITE (9,*) '************************************************'

WRITE (9,*) '

WRITE (9, 30) R

WRITE(*,*) **************************************************

WRITE(* 30)R

FORM_AT('THE VALUE OF MEAN RESISTANCE MOMENT = ',F5.2, ' KIP-FT'

WRITE(*,*)' '

WRITE (9,*) '
]

WRITE (9, 40) Q

WRITE(*, 40)Q

FORMAT(' THE VALUE OF THE IMPOSED LOAD= ',F5.2, ' KIP-FT')

WRITE(*,*)' '

WRITE (9,*) '

WRITE (9,50)Vr

WRITE(*, 50)Vr

FORIVaAT( ' THE VALUE OF C.O.V OF RESISTANCE = ' ,F5.2)

WRITE(* *)' 'f

WRITE (9, *) ' '

WRITE (*, 60) Vq
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WRITE (9, 60)Vq
FORMAT(' THE VALUE OF C.O.V OF LOAf) MOMENT= ' ,F5.2)
WRITE(*,*) ' '
WRITE(9, *) '
WRITE (*, 70) BETA1
WRITE(9, 70) BETA1
FORMAT(' THE VALUE OF BETA USED = ' ,F5.2)
W;_DTE(*, *) ************************************************

WFITE[9,*) ***********************************************

ST& _

E;_D
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LOADING CALCULATIONS IN ACCORDANCE WITH THE UNIFORM BUILDING

CODE S :

According to the Uniform Building Codes(UBC);

i. Minimum roof live load = 20 psf.

2. Minimum office live load = 50 psf.

Intermediating these values, we use;

Dead load on the frame = 20 psf.

Live load on the frame = 40 psf.

Choosing a bay width of i0 ft.

Uniform dead load on beams = 20"10 = 200#/ft = 0.2 K/ft

Uniform live load on beams = 40"10 = 400#/ft = 0.4 K/ft

Therefore,

Concentrated dead load at the center of beam = 3.6 K = 4 K

Concentrated live load at the center of beam = 7.2 K = 7.5 K

Basic Wind Speed = 70 mph. (Nashville)

P=C e Cq qs I

I=l .0

qs= 12.6 psf



Ce= 1.06 (Exposure C)

97

Cq= 1.2

Therefore,

P= 1.06"1.2"12.6"1.0

P= 16.03 psf.

Linear load along column edge = 16.1"1 = 161#/ft = 0.161

K/ft.

Horizontal wind load = 1.61K = 2 K
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* Design Algorithm for running NESSUS

Analysis

(Single limit state problems)

for Probabilistic

i. Create a data file with a *.dat extension.

2. Copy the *.dat file to for000.dat. This can be done by

typing copy <*.dat> space forOOO.dat.

3. To enter the failure function modify the subroutine

respon.for

4. To edit the file respon.for, type edt <respon.for>.

This will create an editor asterisk on the screen. Type 'c' at

the '*' to get into full screen mode.

5. Make changes and exit the file by holding the ctrl key

and pressing 'z'. This will again produce the editor's

asterisk. Type 'save' at the asterisk and close the file.

6. Once the subroutine is modified, it has to be compiled

and linked to

<filename.for>

the library. To compile type fortran

7. Link the compiled file to the library by typing link

filename(omit extension), nes/lib

8. The probabilistic analysis can be done by typing run

nessus at the VAX prompt.
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9. NESSUS will then ask for the filename. The filename

should be typed without the .dat extension.

i0. Once the run is completed, the output information

will all be stored in for000.dat file. To preserve this

information, change the name of the for000.dat to <input

filename.out>, by typing ren for000.dat space <input

filename.out>

ii. To study the sensitivity analysis results, type

<input filename.mov>. If the safety index is low or the

probability of failure is high, identify the most sensitive

design parameter from the sensitivity analysis.

12. Increase/decrease the coefficient of variance of the

most important design parameter and do the probabilistic

analysis again. This can be done by repeating steps 6 through

Ii.

* Design Algorithm for Running NESSUS for Probabilistic

Analysis (MultipleLimit state problem/ Syst_nreliability)

i. Create a data file with a *.dat extension.

2. Copy the *.dat file to for000.dat. This can be done by

typing copy<*.dat> space forO00.dat.

3. The probabilistic analysis can be done by typing run
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nessus at the VAX prompt.

4. NESSUS will then ask for the filename. The filename

should be typed without the .dat extension.

5. Once the run is completed, the output information will

all be stored in for000.dat file. To preserve this

information, change the name of the for000.dat to <input

filename.out>, by typing ten forOOO.dat space <input

filename.out>

6. Increase/decrease the coefficient of variance of the

most the most sensitive design parameter and do the

probabilistic analysis again. This can be done by repeating

steps 1 through 5.
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CHAPTER I

INTRODUCTION

1-1. Background

In modern engineering design, the need for designing

high-reliability, optimal structure systems has been

increasing recently due to the demand for greater quality,

reliability, and lower cost or weight. An optimal structure

system design must satisfy the performance of cost, volume,

weight, or speed ratio objectives as well as the system or

component reliability constraint. The latter is used to

quantify the uncertainty existing in different failure models,

loading conditions, material properties, and geometric

parameters. To deal with these uncertainties, reliability

technology provides tools for formal assessment and analysis.

Meanwhile, optimization technology plays an important part

to meet the optimal design objectives. Therefore, the

combination of reliability and optimization technologies is

a viable way to design high-reliability optimal structural

systems.

The scope of this study is, however, mainly concentrated

]
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on the design of a gear train using reliability-based

optimization design method. Some failure models of gear, such

as wear and thermal conditions, are not investigated in this

study.

1-2. Objectives and Organization of the Report

2.1. The theory of the probabilistic design methodology in

depth and an overview of

Evaluation of Stochastic

described in Chapter II.

2.2. The theory of GRG (Generalized

the software, NESSUS (Numerical

Structure Under Stress), are

Reduced Gradient method

for optimization) and its application, and development of GRG

computer program for this project, are described in detail in

Chapter III.

2.3. Discussion of the combination of reliability design

method and optimization design method is presented in Chapter

IV.

2.4. The application of reliability-based optimization design

method for a gear train and the results, their interpretation,

explanation and

2.5. The summary

and

VI.

comparison are described in Chapter V.

and conclusions of the present study

suggestions for future research are presented in Chapter



CHAPTER II

PROBABILISTIC DESIGN METHODOLOGY

2-1 Introduction

In engineering designs, decisions are often required

irrespective of the state of completeness and quality of

information, and thus are made under conditions of

uncertainty. In other words, the consequences of a given

decision cannot be found out with complete confidence. Besides

the fact that the information must often be inferred from

similar circumstances or derived through modeling, many

problems in engineering involve natural processes and

phenomena that are inherently random. The states of such

phenomena are naturally indeterminate and thus cannot be

described definitely. For these reasons, decisions required

during engineering design invariably must be made under

conditions of uncertainty.

The effects of such uncertainty in design are important.

To be sure, the quantification of such uncertainty and

evaluation of its effects on the performance and design of an

engineering system should include concepts and methods of

probability. Furthermore, under conditions of uncertainty,

the designs of engineering systems involve risks, and the
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formulation of related decisions requires them to be risk-

free. The problems of uncertainty in the design can be

overcome by applying the methods of probabilistic design.

Thus, the role of probability is quite pervasive in

engineering. It ranges from the description of information to

the development of bases for design and decision-making [i].

PDM (Probabilistic Design Method) is concerned with the

probability of non-failure performance of structures or

machine elements. It is much more useful in situations in

which design is characterized by complex geometry, possibility

of catastrophic failure, or sensitive loads and material

properties. Current studies on probabilistic structure

analysis methods have resulted in a new class of tools that

the engineer can use to obtain direct information on the

uncertainty of structural performance. Reliability analysis

evaluates the probability by a rational treatment of the

uncertainties in various design parameters. It is becoming

substantially evident that the PDM is beginning to attract

more attention [2]. The PDM has been successfully applied to

various loading conditions encountered during space flight

[3]. Some reasons for the increasing acceptance of the PDM [2]

are

i) The deterministic method can provide some basic



2)

3)

5

information to complex design problems but provides no

information with regard to the reliability of the design.

Probabilistic computations are becoming simpler and less

expensive because of software being developed.

The PDM and the information it provides are becoming more

widely understood and better appreciated.

One of the most recent computer codes is NESSUS

(Numerical Evaluation of Stochastic Structure Under Stress).

This code was developed under NASA's probabilistic structure

analysis program. An overview of NESSUS and the description of

its development are given by Cruse et ai.[4,5].

2-2. Application of PDM

Because probabilistic design method (PDM) is concerned

with the probability of failure-or preferably, reliability-it

is most useful when uncertainties in material properties and

loading conditions are considered. To apply probabilistic

design methodologies (PDM), all uncertainties are modeled as

random variables, with selected distribution types, means, and

standard deviations. The primitive (random) variables that

affect the structural behavior have to be identified. Every

design project demands some sequential stages of reflection
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before one can arrive at the final design goal. This is also

the case with PDM. The various design stages of PDM are as

follows:

i) Defining the problem.

2) Generating design parameters.

3) Relating the defined problem to the design

parameters.

4) Assembling data and applying probability

concepts.

5) Using probabilistic Analysis.

6) Interpreting results.

The design stages of PDM are shown in Figure 2-1.
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2-2.1. Problem definition

The first step which a designer takes in solving a design

problem is to find out the main objective of the design. After

finding out the objective, the next step is to define in a

precise manner the functional requirements of the system or

component to be designed. These functional requirements should

be able to characterize completely the design objective by

defining it in terms of specific needs. With a clear

understanding of what one is searching for, the designer then

goes to the next stage.

2-2.2. Generating design parameters

In order to solve the defined problem, acceptable design

parameters must be generated that will meet the defined

functional requirements. To generate the design parameters,

one uses an appropriate design model. The various parameters

(loads, material properties, geometry, etc.) are taken into

consideration. The design parameters to be selected depend on

the objective of the design [6].

2-2.3. Relating the defined problem to the design parameters

After defining the design parameters, the designer then

relates the functional requirements in the functional domain

to the design parameters in the physical domain, to be sure
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that the objective is satisfied. If the relation is

satisfactory, the designer goes to the next stage. If the

relation is not satisfactory, it is redefined, so that the

objective is satisfied.

2-2.4. Data assembling and application of probability concepts

This stage requires assembling the essential data that

are available on the problem with regard to the design

parameters. If some data are unavailable, then it becomes

necessary to perform a computational simulation analysis to

generate the missing details. Once the data have been

assembled, the next stage is to analyze the assembled data.

NESSUS is the computer tool used to perform the analysis.

NESSUS has three modules, known as NESSUS/PRE, NESSUS/FEM, and

NESSUS/FPI.

NESSUS/PRE is a preprocessor, which prepares the

statistical data needed for the probabilistic design analysis.

It allows the user to describe the uncertainties in the

structural design parameters. The uncertainties in these

parameters are specified by defining the mean value, the

standard deviation, and the distribution type, together with

an appropriate form of correlation. Correlated random

variables are then decomposed into a set of uncorrelated

vectors by a model analysis.
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NESSUS/FEM is a general purpose finite element code,

which is used to perform structural analysis and evaluation

of sensitivity due to variation in different uncorrelated

random variables. The response surface, defined in terms of

random variables required for probabilistic analysis in

NESSUS/FPI, is obtained from NESSUS/PRE. NESSUS/FEM

incorporates an efficient perturbation algorithm to compute

the sensitivity of random variables [6].

NESSUS/FPI is an advanced reliability module, which

extracts the database generated by NESSUS/FEM to develop a

response model in terms of random variables. In this module,

the probabilistic structural response is calculated from the

performance model. The probability of exceeding a given

response value is estimated by a reliability method. Inside

the NESSUS/FPI module is a sensitivity analysis program, which

determines the most critical design parameters in the design.

The input data for NESSUS/PRE requires fundamental knowledge

of statistics or probability theorems. The expected details

will include determining the mean, standard deviation, median,

coefficient of variation, variances, etc., associated with

each random variable. The designer also determines the

probability distribution function that best describes each

random variable. The different modules of NESSUS are shown in

Figure 2-2.
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Figure 2-2: Modules of NESSUS [6]
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2-2.5. ProbabilisticAnalysis

It is at this stage of the design that the designer

defines a limit state function. The limit state function is a

function that defines the boundary between the safe and

failure regions. In the limit state function approach for

structural reliability analysis, a limit state function g(X)

is first defined. The g-function is a function of a vector of

basic random variables, X =(Xl, X2, X3,. .X n) with g(X)=0

being the limit state surface that separates the design space

into two regions, which are the failure g(X)<0 region and

the safe g(X)>0 region. Geometrically, the limit state

equation, g(X)=0, is an n-dimensional surface that may be

called the "failure surface." One side of the failure surface

is the safe state, g(X)>0, whereas the other side of the

failure surface is the failure state, g(X)<0.

The probability of failure in the failure domain _ is

given by

Pf = fn- • -ffx (X) dx (2-1)

where fx(X) is the joint probability density function of X and

Q is the failure region. The solution of this multiple

integral is, in general, extremely complicated. Alternatively,

a Monte Carlo solution provides a convenient but usually time-
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consuming approximation. The limit state function method uses

the Most Probable Point (MPP) search approach, shown in Figure

2-3. The Most Probable Point is the key approximation point

for the FPI analysis; therefore, the identification of MPP is

an important task. In general, the identification of the MPP

can be formulated as a standard optimization problem and

solved by proper optimization methods.

From the Figure 2-3, as the limit state surface, g(X)=0,

moves closer to the origin, the safe region, g(X)>0, decreases

accordingly. Therefore, the position of the failure surface

relative to the origin of the reduced varieties should

determine the safety or reliability of the system. The

position of the failure surface may be represented by the

minimum distance from the surface g(X)=0 to the origin. The

point on the surface with minimum distance to the origin is

the Most Probable Point (MPP). This is usually determined by

fitting a local tangent to g(X) and moving this tangent until

MPP is estimated.

In the NESSUScode, MPP is defined in a transformed space

called u-space where the u's are independent to simplify the

probability computations. By transforming g(X) to g(u), the

most probable point, u', on the limit state, g(X)=0, is the

point that defines the minimum distance from the origin to the

limit state surface. This point is most probable (in the
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u-space) because it has maximum joint probability density on

the limit state surface. The required minimum distance is

determined as follows. The distance from a point u°=(u I , u2 ,

• .., Un') on the failure surface g(u)=0 to the origin is

!
B

D :
i-|

(2-2)

where D is the minimum distance from the point on the limit

state surface to the origin.

The FPI code assumes only one MPP. In general, however,

the possibility exists that there may be multiple local and

global Most Probable Points. A two MPP problem can occur;

for example, if the g-function is quadratic, the search

algorithm may result in oscillating (non-convergent) search.

Several approaches are available to search for the MPP.

The search procedure depends on the forms and the number of

the g-function(s). One efficient method in use is the Advanced

Mean Value method (AMV). This method blends the conventional

mean value method with the advanced structural reliability

analysis method. This method provides efficient cumulative

density function analysis and the reliability analysis. The

step-wise AMV method can be summarized as follows [7]:

I. Obtain the g(X) function based on perturbations about



the mean values.

2. Compute the cumulative density function

performance function at selected points

fast probability integration method.

16

of the

using the

3. Select a number of cumulative density function values

that cover a sufficiently wide probability range.

4. For each cumulative density function value, identify

the most probable point.

The analytical process involved in the limit state

approach can be illustrated by a basic structural reliability

problem. In the problem, only one load effect, S, limited by

one resistance, R, is considered.

If one considers a case when R and S are independent,

the limit state equation can be expressed as

g = R- S (2-3)

and the probability of failure can be expressed as;
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For any random variable the cumulative density function F(x)

is given by

Fx(x ) = P(X<x) = f fx(Y )dy (2-5)

provided that x a y. Therefore Pf is expressed as

Pr = P(R-S<O) = j'FR(x)fs(x)dx (2-6)

Assuming a special case of normal random variables, for

some distributions of R and S, it is possible to integrate the

equation (2-6) analytically and find out the probability of

failure. If S and R have mean DR and Ds and variance _R2 and _s2

respectively, the g-function has a mean Dg and variance og2,

given by

It, = ItR Its (2-7)

0,2= og 2 + Os2 (2-8)

Therefore, the probability of failure is given as

es. PfR-s_ 0).p(g _ 0)._[-- o - ,, ] (2-9)
0
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Which reduces to:

( _R - _s )
'_ [- ] * • (-P) (2-10)

Og + 0 a )

where _ is defined as the safety index.

13 * la---/t (2-11)
O

Thus, the probability of failure is given as

Pf = _ (-13) (2-12)

which can be written as

Pf = 1 - 4)([3) (2-13)

Reliability is the probability that the structure will not

violate a given performance criterion during a specified

period. This can be mathematically expressed as

P,. * 1 - Pf (2-14)

where Pr is the reliability and Pf is the probability of
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failure. Structural reliability analysis evaluates the

probability of failure by rationally treating the various

uncertainties.

2-2.6. Interpretation of Results

This is the last stage in the methodology. When the

designer approaches this stage, one interprets the results

obtained about the initial objective. If the results do not

satisfy the functional requirements in the stage I, the

designer may adjust design parameters to achieve the set

objective.

2-3. Probability Sensitivity Factors

In engineering performance analysis many sensitivity

measures can be defined. Knowing the effect of each random

variable in the analysis is important for the designer. The

sensitivity information is quantified by sensitivity factors.

Sensitivity factors suggest which random variables are crucial

and require special attention.

The commonly used sensitivity factor in deterministic

analysis is the performance sensitivity, aZ/@X±, which measures

the change in the performance due to the change in a design
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parameter. This concept can be extended to the probabilistic

analysis in which a more direct sensitivity measure is the

reliability sensitivity that measures the change in the

probability/reliability relative to the distribution

parameters such as the mean and the standard deviation.

Although not automated in the code, this analysis can be

performed by varying the parameters.

Another, perhaps more important, kind of probability or

reliability sensitivity analysis is the determination of the

relative importance of the random variables. This analysis can

be done, for example, by repeated probabilistic analysis in

which one random variable at a time is treated as a

deterministic variable. The results of the analyses, for

example, are a number of cumulative density function curves or

reliabilities. Based on the results, the relative importance

of the random variables can be analyzed. The standard FPI

output includes a first-order sensitivity factor that provides

approximate relative importance of the random variables.



CHAPTER III

OPTIMIZATION DESIGN METHODOLOGY

3-1. Introduction

Optimization is the method of obtaining the best result

under given circumstances. In design, construction, and

maintenance of any engineering system, engineers have to take

many technological and managerial decisions at several stages.

The ultimate goal of all such decisions is either to minimize

an effort required or to maximize a desired benefit.

Engineering design is a multiphase process requiring constant

decision making by the designer. Based on his decision, the

engineer is able to define variables, a design objective, and

a set of constraints that must be met in order that the design

is a workable solution. By developing corresponding equations,

the design problem can be formulated into a standard form

acceptable to mathematical programming techniques. This

standard form is defined below.

Minimize

X = (X1,x 2,x 3,...,x_,)T, X • RN (3-1)

21



subject to

22

_k(X ) > 0 k = 1,2,3,...,K (3-2)

_t(X) - 0 1 = 1,2,3,...,L (3-3)

where

X is a column vector of design variables

N is total number of design variables

f(X) is objective function

_k(X) is K inequality constraint functions

_1(X) is L equality constraint functions

A more general occurrence in engineering design arises

when expressions (3-1 to 3-3) are nonlinear. This is known as

the nonlinear programming (NLP) problem. No general method has

been developed to solve nonlinear problems in the sense that

the simplex algorithm exists to solve the linear problem.

Although many strategies have been suggested, comparative

studies [8,9] have shown that no method has been successfully

applied to all problems. In this project the Generalized

Reduced Gradient (GRG) method will be described. The GRG
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method avoids many of the problems associated with penalty

function and LP-like methods [i0], producing one of the most

powerful methods currently known for handling the constrained

nonlinear programming problem. The principle behind this

method is quite simple, but its application is rather complex

[11].

3-2. Theory of Generalized Reduced Gradient Method

The Reduced Gradient method was originally given by Wolfe

for a nonlinear objective function with linear constraints

[12,13]. A generalization of Wolfe's method to accommodate

nonlinearities in both the objective function and constrains

was first accomplished by Abadie [14]. Concurrently to both

Wolfe and Abadie, Wilde and Beightler developed their

differential algorithm based on the constrained derivative

[15]. The constrained derivative and the reduced gradient

employ much the same theoretical basis, but for purposes of

this discussion, the method shall be known as the Reduced

Gradient method. The case of nonlinear constraints was

pioneered by Abadie [14], who called it the "generalized

reduced gradients (GRG)." Later variants were developed by

Lasdon and Waren [16], Gabriele and Ragsdell [i0]. Both

Gabriele [17] and Lasdon and Waren have implemented versions

for large sparse systems. The general constrained nonlinear
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Minimize f(x)

x = (x,, x2, x3,..., x_, )r, x _ R _ (3 - 4)

subject to

,=(X)-- 0 m = 1,2,...,M (3-5)

A < X _ B (3 - 6)

The N x 1 vectors A and B represent upper and lower bounds on

the design vector X. These upper and lower bounds can be

assumed to be the finitive or infinitive bounds. The

inequality constraints have been included as equality

constraints by using the following transformation:

*k( x ) = ¢( X ) - Sk -- 0

0 _ Sk _ " k = 1,2,...,K (3-7)
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_k( x ) = ¢( x ) + Sk -- 0

-_ _ Sk _ 0 k = 1,2, ...,K (3-8)

The variables Sk

original set of design variables.

represents the total number of

are slack variables that are included in the

Therefore, the parameter N

design variables plus the

number of slack variables used for the transformation of

(3-7) or (3-8). The parameter M represents the total number of

constraints:

M = L+ K

Where

L is number of equality constraints

K is number of inequality constraints

(3-9)

It should be stressed that the

nontrivial constraints; that is, they

constraints. Variable bounds are defined in

require separate handling.

Linearization of equation (3-5) will result in M equality

constraints with N independent variables. If the constraints

were linear, all we have to do is to use elimination process

constraints of (3-5) are

are functional

(3-6) and will
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to reduce the number of independent variables to K using the

equality constraints and then substituting the independent

variables into the objective function f(.). Unfortunately,

the problem is nonlinear so direct substitution is very

difficult. Consider the following strategy whose fundamentals

can be found in the simplex method of linear programming.

Divide the design vector of equation (3-9) into two classes

that shall be known as the decision and state variables.

X= [Z, Y] T

Z = [ zl, z2, ...ZQ ]T

Y = [ Yl, Y2,.--YM ]T

where

Z : decision variables; y : state variables.

Q : number of decision variables, Q = N - M.

(3-10)

(3-11)

(3-12)

The decision variables are completely independent, and the

state variables are slaves to the decision variables used to

satisfy the constraints _( X ).

The following notation will be useful in the discussion

to follow:

g(D - [ a_19 , a_X) , . . . , a_X) ]T (3-13)

OyI Oy 2 ay_
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g(Z) = [ Of(X) , Of(X) , . . . , Of(X) ]r (3-14)

Oz_ az 2 OzQ

at
az

az I az 2 az Q

• •

a____ a_ u a_ u

az1 az 2 az Q

(3-15)

a¥

"a_ 1 a_ i a_,

ayI ay2 ayu

• •

• °

a,_u a_ u a_u
• •

ay, ay2 ayu

(3-16)

Let us examine the first variation of f(X) and _(X),

df • g(Z) r dZ • g(F) _ dY (3-17)
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at -- o__$,az • o__,ar -- o
OZ OY

(3- is )

where

dZ = Qxl vector of differential displacements of Z

dY = Mxl vector of differential displacements of Y

Solving (3-17) and (3-18) and rearranging will yield the

following linear approximation to the reduced gradient:

dY = OOt" OO dZ (3-19)
OY OZ

Substituting (3-19) into (3-17)

05
gr(X)r, g(Z)r_ g(y)r

OY OZ
(3-20)

The reduced gradient defines the rate of change of the

objective function with respect to the decision variables with

the state variables adjusted to maintain feasibility.

Expression (3-19) gives the changes necessary in the states

for a given change in the decisions for linear constraints.

Geometrically the reduced gradient can be described as a
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(N-M)

29

of the original N- dimensional gradient onto the

- dimensional feasible region described by the

decision variables.

A necessary condition for the existence of a minimum of

an unconstrained nonlinear function is that the elements of

the gradient vanish. Similarly, a minimum of the constrained

nonlinear function occurs when the appropriate elements of the

reduced gradient vanish. This conclusion can be verified by

a comparison with the Kuhn - Tucker [18] conditions for the

existence of a constrained relative minimum.

By first transforming the variable bounds into inequality

constraints,

el(X) = xi - al aO

¢i+_(X)= bi - xi >0

(3-21)

(3-22)

where i = 1,2,3,...,N

we can form the following lagrangian function:

ZW

L(x,v, no --._x_+ F_.,w. ,.(x_ - E uj ,+,/x_
m.l _1

(3-23)

The following Kuhn-Tucker necessary conditions hold for a
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g(x')", w; uj" ; 0 (3-24).,-I aX j-I

and

_(X*)-- 0 m = 1,2,...,M (3-25)

#j(X* )a 0 j = 1,2,...,J =2N (3-26)

Uj* _j(X*)-- 0 j = 1,2,...,J =2N (3-27)

Uj" _ 0 j = 1,2,...,J = 2N (3-28)

W_° _ 0 m = 1,2, ...,M (3-29)

Introducing decision and state variables into (3-24) and

decomposing we can obtain the following form:

g ( Z" )z. W._" 8_' U "r 8--_ ffi 0 (3-30)
_Z" aZ"

g ( y.)r. W.T a_ u.r 84} _. 0 (3-31)
aY" BY"

For the reasons that a state variable is not allowed to

be equal or sufficiently close to either of its bounds. Form

expression (3-27) the elements of U* corresponding to the

state variable bounds must be zero. Also, those elements of
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a¢ /@Y corresponding to the decision variable bounds will be

zero eliminating the last term of (3-31). Solving (3-31) for

W* and substituting into (3-30) will produce the following

expression:

g (z')r-z (y.)r aq,-' at
aY' az"

u.r a_ _ 0 (3-32)
aZ'

Rearranging (3-32), we obtain

v.r a___. e (z")r_ g ( y. ),- a,_-__'a!
az" a Y" az"

(a-33)

It can be recognized that the right-hand side of (3-33)

is gr(X). By examining the possible values of the left-hand

side of (3-33), a candidate point X will be X* if

gr(X)i > 0 if Zi = ai

g_(X) i < 0 if zi = bi

g_(X) i = 0 if ai _ zl _ bl

where i = 1,2,3, ...,Q (3-34)
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3-3. Generation of Feasible Starting Points

In the application of GRG method, generation of feasible

starting points is an important step. As the final element of

problem presolution analysis, the formulation should be tested

for feasibility. While the preceding stages of problem

preparation and analysis may have resulted in a numerically

stable, bounded, and nonredundant formulation, it is always

possible that, as a result of poor data or calculation errors,

the problem constraints simply exclude all possible solutions.

Thus, whether or not the optimization algorithm selected for

use requires a feasible starting point, it is good practice to

devote some effort to generating a feasible starting point.

Obviously, if no feasible starting point can be obtained,

there is little point in proceeding with optimization.

Instead, the model must be inspected again and validated in a

piecemeal fashion until the sources of error are identified.

If a feasible point can be generated, and if the variable

values at the generated point appear reasonable, then one can

proceed with problem solution with a fair degree of confidence

that the optimization runs will be productive.

A very common way of generating feasible starting points

is direct minimization of the constraint infeasibilities. The

method of minimization of unconstrained penalty-type functions

has been proposed. This method is often preferable,
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especially, for higher dimensionality and tightly constrained

problems [19] . The procedure consists of solving an

unconstrained minimization problem whose objective function is

an exterior penalty function. The starting point is thus

obtained as the solution of the problem.

Minimize:

_x9 : _ (,,(_9)_. _ (ram(0,#j(Ag))2 (33s)
t.I /-1

where

_i(X) = quality constrained functions.

k = number of quality constrained functions.

¢j(X) = inequality constraints of the variable bounds.

N = number of unknown variables in function.

Clearly a feasible point is one that will result in an

objective function value of zero. Hence, the unconstrained

minimization will be terminated when f(X) becomes sufficiently

small. Generally, the minimization can be simplified if the

problem is posed in equality-constraint-free form.

3-4. Perform the Line Search to Locate Local Minimum

When a search direction D(Y) is determined for the state
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variables, the vector D(Z) has defined a line in the reduced

N - M dimensional space along which exists a local minimum of

the objective function. It is the task of this section to

locate the minimum so that it might be used as a starting

point for the next iteration. The performance of this task is

a common occurrence in many unconstrained searching

techniques, and in the case of the reduced gradient represents

the bulk of the computational effort.

The normal course of events in locating a minimum along

a line consists of two phases. The first phase involves

locating an initial bracket within which the minimum is known

to be contained. This is commonly referred to as the bounding

phase. The second phase would consist of some efficient scheme

of narrowing the initial bracket unit the minimum is known to

be within some tolerance. Both these phases are outlined in

more detail in [20,21,22].

The Reduced Gradient Method uses this same two - phase

procedure with modifications to accommodate the use of state

and decision variables. From a starting point(Z,Y) k we move to

a new point (Z,Y) k÷1 according to the step prescription

zlk÷1 = bi if zlk+ _ D(z i) a b_

z_k÷1 = ai if zlk+ c_ D(z i) _ ai

zik÷1 = zlk+ _ D(z i) otherwise



where

and

i = 1,2,3,...,Q

Ym k÷l = Ym k + C_ m(Ym) m = 1,2,...,M

(3-36)

(3.37)
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where _ = step length parameter.

Because of nonlinearities arising in the constraint

functions, the point (Z,Y) k÷1 is likely to be infeasible.

Holding the decision variables Zk÷1 constant, the state

variables yk÷1 are adjusted to obtain a feasible point,

(Z,Y) k÷1. This situation is shown in Figure 3-1 for the case

M = I, Q = I. This step is equivalent to the solution of M

nonlinear equations (_(X)- 0) in M unknowns (Y). A number of

numerical techniques are available in the literature to

perform this task. Newton's method [23] has proven to be an

efficient technique as well as convenient since the necessary

partial derivatives have already been calculated. At the

completion of the adjustment procedure, a new point (Z,Y) k÷_

has been determined, and the following possible results must

be considered:

(a). If all elements of yk÷_ are within their specified

bounds, then f(X) is evaluated at (Z,Y) k÷1, and the procedure

for determining the minimum continues in the normal manner.
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Yl

objective function f(X)
D(Z,Y)

_____"'--.. _z,,_,_
, ,, \ _ constrained function _(X)

\ \_/X ',,
-, /',(z,,YO_,

\ / \ _ !
\ / ! _ !

L

Figure 3-1 Adjustment of state
variable to obtain a feasible

point during the linear search
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bounds,

any element of

then (Z, Y) k÷1
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yk÷1 is not within its specified

is infeasible. Successive linear

interpolation is performed between the last feasible point

(Z,Y) k and the point (Z,Y) k÷1 to determine the step length at

which the nearest bound becomes active. Hence this step should

conclude with a single state variable equal to one of its

bounds and all other state variables within their specified

bounds. Figure 3-2 shown (zl, yl) 2 being out of bounds Yl < 0).

Using successive false position, the bound point (zl, yl) 3 can

be located. Supplementary tests are then performed to

determine whether the local minimum lies at the bound or at

some point before it. If the minimum lies at the bound, then

the line search is terminated. If it lies before the bound,

then the minimum has been bracketed, and refinement can

be started to locate the minimum.

(c). If the procedure fails to converge in a reasonable amount

of time, the step length is reduced (_ = _/2), and a new trial

point is generated.
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Vl

objective function f(X)

\
\

- - _ _ " _'-- \\ D(Z,Y)

__.. _ \ \ (Z,Y), \_

"" _\ _ '\\\ constrained function _(X)
\ \ \ \

(z,

Ist lme._ Z,

interpolation

(Z,Y_

Figure 3-2. Adjustment of state
variable to locate a feasible
point.
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3.5. Algorithm of Generalized Reduced Gradient Method.

According to the principle of GRG method, its algorithm

is presented as the following:

Step i. Obtain the feasible initial points.

Given a specified initial value of the search

parameter _ = _0, termination parameter e

Step 2. Choose a partition of X into state Y and decision Z

variables such that @_/aY has nonzero determinant.

Step 3. Calculation of the reduced gradient D : the direction

of move for the independent variable z , by the

following substeps:

Step 3.1. Compute the reduced gradient D(z), given by:

a¥ __ aT

D(zj)= 0 if zj = aj and gj > 0

D(zj)= 0 if zj = bj and gj < 0

D(zj)= gj otherwise

if _ D(z) _ termination parameter e, then a constrained

relative minimum has been obtained. Otherwise, the algorithm

proceeds to the next step.
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Step 3.2. Compute D(y), the modified reduced gradient, i.e.

the (opposite) direction of move for the independent variable

y. This direction may simply be D(y):

OT -I aT
D(10 - - D(Z)

aY aZ

Step 4. Compute a first value of the positive

and Compute z° + _ D, and project it

parallelotope aj _ zj _ bj to obtain z I .

number

onto the

set :

Zj I -_ aj if zj 0 + f_ Dj < aj

zj I --': bj if zj° + CX Dj > bj

Zj I : Zj 0 + (_ Dj otherwise

Step 5. Compute a feasible ZI corresponding to _ , i.e. try to

solve, with respect to y, the system of M equations in

M unknowns:

( zI , y ) = 0

This is usually done by some iterative method

(Newton'method).

Step 6. If no speedy convergence is observed, then decrease

for instance, _i = 1/2 _) and go to step 4, with

the same D. Otherwise, let yl be the solution obtained
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for _(z I , y) = 0, and Z I the corresponding point in

the whole n - dimensional space,

Step 7. If f ( Z ° ) < f ( Z I ), then decrease _ , as above,

and go to step 4, with the same D. If _ = specific

criterion such as i0-12 ,then go to step 2.Otherwise,

at the end of step 7, we have some feasible Z _, which

satisfies :

f ( Z I ) < f ( Z ° )

Step 8. We may now, either set Z ° = Z I and begin a new

iteration, or try to improve the last value obtained

for _. In doing this, we return to step 4 for any new

value tried for _, with the same D, and eventually

terminate step 7 with some Z I satisfying f(Z1)< f(Zl),

and then begin a new iteration with Z ° = Z _, go to

step 3.
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Figure 3-3 Flow chart for generalized reduced

gradient (GRG) optimization method



CHAPTER IV

RELIABILITY DESIGN METHOD BASED ON

OPTIMIZATION DESIGN METHOD

4-i. Introduction

The ultimate goal in engineering design is to produce an

optimal structure system that satisfies the performance�cost�

weight/volume/speed ratio objectives as well as the system or

component reliability constraint, which is used to account for

uncertainty existing in different failure models, loading

conditions, material properties, and geometric parameters. To

deal with these uncertainties, reliability technology provides

tools for formal assessment and analysis of such

uncertainties. However, in order to reach the optimal design

objective, an appropriate optimizer must be used. The

reliability design method based on optimization design method

(also called as Probabilistic Design Optimization [PDO]) has

been researched by Frangopol[24]; Sorensen and Thoft-

Christensen [25]; Nicolaidis and Burdisso [26]; Maglaras and

Nikolaidis [27]; Torng and Yang [28]; and Onwubiko et ai.[29].

The objective function for optimal design, OBJ(X), is

43



subject to the following constraints:
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P(gi(X) > 0)>(I - Pi), i= i, ... , L. (4-1)

Where X is the vector of n random variables, P(.) denotes the

probability of the event (.), gi represents the i-th limit

state function, ( i- Pl ) is the reliability goal for the i-th

constraint or failure mode, and L represents the total number

of constraints.

In general, there are two major difficulties for the

design problem: (I) how to solve complex problems that

require a computation intensive program and (2) how to reduce

the total computational effort within the design optimization

process. To overcome these difficulties, the proposed method

uses an advanced mean value method (AMV) [30, 31] which has

been illustrated to be efficient for solving reliability for

complex problems. To improve the efficiency of computation,

the proposed method uses an approximate function to represent

the original complex component reliability problem [32]. In

other words, there will be only one reliability calculation in

each design iteration.

4-2. Optimal Structural Design Definition :

An optimal structural system design must be insensitive
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to uncertainties incurred from material properties,

environmental conditions, manufacturing variations,etc. A

smaller system variation must be achieved in order to reduce

the possible failure [33,34]. In other words, this optimal

structural system design must have higher reliability or lower

probability of failure. An optimal structural system design is

defined as a high reliability system which not only satisfies

the performance weight / volume / cost objective but also the

component / system reliability constraints.

To achieve an optimal structural system design, the first

important thing is to have a well-defined design problem. With

consideration of design random variables, a more optimal

structural system can be achieved; however, the optimal design

problem setup must be redefined. In general, this new design

optimization problem will have an objective function to be

minimized or maximized as follows:

Objective : F(X,Y), (4-2)

Subject to the reliability constraints:

P (g± (X,Y) a0) _ (l-pl) , i=l, ...,L. (4-3)

Where Y is the vector of m design random variables, X is the
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vector of n random variables, P(.) denotes the probability of

the event(.), gl represents the i - th limit state function,

(i - Pl) is the reliability goal for i-th constraint or

failure mode, and L represents the total number of

constraints.

4-3. Reliability Constraint Function Definition

With all the random variables or design random variables

defined, different failure mechanisms - e.g., yield failure,

fracture failure, and so on - need to be established.

Reliability constraint functions or limit state functions are

used to represent these failure mechanisms. These functions

can be constructed through the response function, Z,

Z = Z( X,Y ) (4-4)

where X represents the random variables and Y represents the

design random variables. This Z function can be a simple close

form function or a complicated model which requires the use of

computer intensive program to model [30].

To calculate the reliability or probability of failure,

a critical failure event must be defined. This failure event

is defined when Z function value is less than or greater than

a critical response value z o. In other words, the reliability



constraint function or limit state function, g, becomes:
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g( X,Y ) = Z( X,Y ) - zo (4-5)

The limit state g(X)= 0 separates the variable space into

_failure" and _ safe" regions. When the equal chance constraint

function becomes unequal, i.e., g <0 or Z _ Zo the reliability

or probability of failure, pf can be calculated as :

Pf =Prob(g(X,Y)< 0)=Prob(Z(X,Y)- Zo_ 0) (4-6)

For each simple close formed g function, the reliability

computation is straightforward. To calculate an implicitly

defined g-function, however, the total computation becomes

time consuming so that the selected probabilistic method must

be efficient and reasonably accurate.

4.4. Reliability Constraint Function Calculation:

In general, the structural reliability analysis method is

developed to solve a limit state function g(X). Given the

joint probability density function, fx(X), the probability of

failure can be formulated as:

Pf = P(g < 0) =S---;n fx( X )dx (4-7)
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where Q is the failure region. This multiple integral is in

general very difficult to evaluate even though there is a

Monte Carlo solution that can provide a convenient but usually

time-consuming solution. The first step in the current

reliability analysis methods requires the transformation of a

general dependent, random vector X into an independent,

standardized normal vector u. The Rosenblatt transformation

[16] has been suggested for this, when the joint distribution

is available [35,36]. If only the marginal distributions and

the covariances are known, a transformation can be made to

generate a joint normal distribution that satisfies the given

correlation structure.

By transforming g(X) to g(u), the most probable point

(MPP) in the u-space, u*,is located, u* is the point that

defines the minimum distance, _, from the origin ( u = 0

point ) to the limit state surface. This point is most

probable because it has maximum joint probability density on

the limit state surface, as shown in Figure 4-1. The MPP may

be found by using optimization method or advanced mean value

(AMV) method. Next, the g(u) or g(X) function is approximated

by a polynomial that approximates the true function in the

vicinity of the MPP. Once the approximate function is

obtained, the associated failure probability can be computed.

If the g(u) formulation is used, several analytical solutions
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Figure 4-1 Illustration of a most probable

point [28]
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are available for linear and quadratic functions [36]. For

example, the first-order reliability method (FORM) estimate is

P( g_ 0 ) = ¢ (-_) (4-8)

To compute the component structural reliability for complex

problems that require computation intensive programs, the

Advanced Mean Value method (AMV) is suitable because it was

developed to search for the MPP with fewest extra g function

calculations by comparing with the conventional mean based

second moment method [30,31,32].

Let us assume that the Taylor's series expansion of

performance function, Z, exists at the mean values. The Z

function can be expressed as:

z(x)
n

=z(.). _ az
,., ax-_,(x, - ),,) • _(x)

N

: "o " _ ,_,x,, H(X)
iol

= Z,(X) • H(X) (4-9)

where the derivatives,_i, are evaluated at the mean values,p,Z I

is a random variable representing the sum of the first-order

terms, and H(X) represents the higher-order terms. In general,
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the coefficients _I can be computed by numerical

differentiation, and the minimum required number of Z-function

calculations is

explicit

function)

(n+l) for n random variables. Since Z I is

and linear, its cdf (cumulative distribution

can be computed efficiently.

For nonlinear Z-functions, the solution based on Z I is

improve accuracy, higher-order

can be developed. However, for

only approximate. To

approximation functions

problems involving implicit Z-functions and a large n, the

higher-order approach might be difficult and inefficient.

The AMV method reduces the truncation errors by replacing

the higher-order terms H(X) by a simplified function H(Z I)

dependent on Z I. Ideally, the H(Z I) function should be based

on the exact most probable point (MPP) locus of the Z function

to minimize the truncation error. The AMY procedure simplifies

this approach by using the MPP of Z I-

At each calculated MPP, probability sensitivity

factors,a, for every defined design random variables or random

variables are the by-product from the reliability analysis.

These sensitivity factors, as discussed, are defined in the

transformed standard normal space ( u - space ):

ap ap
= = -- . (4-10)

a,, a¢-'
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where _ represents the safety index value, _-i represents the

inverse standard normal cdf, and Fx(X) represents the cdf for

the original random variable, X. Comparing the absolute values

for these sensitivity factors shows their relative importance

to the reliability solution. If all design random variables

have uncertain means (or standard deviations), the reliability

itself becomes a random function of these uncertain

parameters. To measure the effect caused by these uncertain

parameters, the probabilistic sensitivity factors, with

respect to these uncertain design parameters and reliability

(safety index, B), can be derived as follows:

a_p__ . a_ auz au
* ¢ -- (4-11)

where Dx and Gx represent mean and standard deviation values

of random variable X, respectively. Since ux is a function of

Dx and ox , @Ux / @Dx and au x / aG X can be derived also.

With these @u_ / _/_ and @ux / a_ values evaluated, it is
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possible to construct an approximate reliability constraint

function, gA(Dx,ax), as

g,,(,., o) : 13o._ a.j._p0%- "_2

N

._ ap
k., a%, (%,- %,_) - ¢-'(i -p)

= co• c_ ,.. _ c, %- ¢"0 - p)
j-I k.1

(4-13 )

where [30 is the safety index result, Dxj0 is the j-th initial

mean value, oxk0 is the k-th initial standard deviation value,

¢-i(.) represents the inverse normal cumulative distribution

function (cdf), (l-p) is the select reliability goal, and CO ,

Cj , and C k are constant.

Torng and Yang [28] have shown a safety index approximate

function _i(X) as :

_ 8P5
M

._ ap
,.., ao (%- %)

Ill III

-Co.E c,,% +E
j-I _-l

C k Ox k (4-]4)
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Therefore, an approximate reliability constrained function (or

a limit state function), gA(X), can be defined as follows:

n N

gACX)--c o • _ cj ._, • _ c k oz. - _-'(i - p)
]-1 k.1

(4-15)

or

gA(x)--_,(x)-_-_(I-p) (4-16)

In order to compute efficiently a reasonably accurate system

sensitivity, the simplest and most efficient strategy is

accomplished first by constructing an approximate function at

the MPP of each bottom event. By using all approximate

functions instead of the original complex failure models, the

probability sensitivity, with respect to mean value and

standard deviation, can be derived as @Ux /a_x and aUx /aox ,

respectively. This sensitivity can be calculated by perturbing

all design random variables. Total computational effort is

reduced greatly because these perturbation analyses are

performed based on analytical approximate functions.

Wu, Torng, and Yang [28,31] point out AMV method is the

best strategy for identifying the MPP for each of the failure

models. Therefore, by using AMV, MPPs can be identified, and
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approximate functions can be established. Once approximate

functions are obtained, based on the objective function and

all approximate functions, an optimization program is used to

find the optimal design values. In this project GRG

optimization program, which was developed by Dr. C. Onwubiko,

is employed as an appropriate optimizer to obtain the optimal

design values and safety index, the latter is based on the

equation (2-2) with proper constrained functions.

4-5 Algorithm of Reliability Design Method Based on

Optimization Design Method

Step 1. Define the optimal structure system or components

requirement and construct an optimization design

problem.

Step 2. Use the old design point as the initial design point.

(In general, use the mean value of design random

variables as the initial design point. )

an approximation function for component

function at the initial design point

Step 3. Construct

constraint

by the following steps:

a). Evaluate the safety index , _0, for the i-th

reliability constraints at X o by using advanced mean

value (AMV) method or an appropriate optimizer.

b). Construct an approximate constraint function for
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component reliability constraint based on the safety

index with respect to the main values and standard

deviations of those design random variables.

c). Construct an approximate reliability constraint ( or

limit state function ).

d). Construct other approximation functions for other

constraint functions.

Step 4. Based on the objective function and all approximation

functions, GRG (GRG = Generalized Reduced Gradient

Method).optimizer is used to find the optimal design

values.

Step 5. Repeat steps 2 - 4 until the number of iteration is

reached or the convergence criterion is met.
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define OBg(X,Y) Lnd subject to
the reli_Ooility c_r',tlnts
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J using optimizer to obtain thebest values of desi_pavariables X

No

Figure. 5-2. Flow chart for reliability design

method based on optimization method



CHAPTER V

DESIGN OF A GEAR TRAIN USING A RELIABILITY

BASED OPTIMIZATION METHOD

5-1. Introduction

In engineering designs, the high reliability and minimum

volttme/cost/special design requirement of components / system

is a goal pursued by engineers. A design of a gear or gear

train is always considered an important and complex part of

mechanical engineering design. Gears are often built into

machines, e.g. as part of a gearbox. Smaller gears would imply

a smaller gearbox, which leads to further savings. Tucker [37]

says that maximizing load capacity for a given material and

size generally results in lowest cost per horsepower

transmitted. Willis [38] states that "weight reduction usually

means volume reduction, which in turn lowers cost of

materials, handling and shipping." It can be seen then that a

good strategy is to minimize the size of the gear, not only

because of direct saving on the gear, but also on related

operations. Dudley [39] states, "It is often possible to

reduce by half the length, width, and height of a gearbox by

58
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simply changing from steel gears with a low hardness value to

full-hard gear teeth. This is an 8:1 reduction in gear weight,

which means substantial savings in material, machinery,

storage, and shipping costs of the gearing and the housing."

In the automobile industry smaller gears mean lighter gears;

hence, lighter gearboxes and ultimately lighter cars. The

search for increased efficiency (i.e., fuel economy) makes

reducing the size of gears important regardless of initial

cost. In the case of helicopters, reduction in size and

weight can result in an increase in payload [40].

This chapter describes the minimization of the rotation

output of the gear system, a special design requirement, using

reliability based optimization method.

5-2. Model Formulation

In designing gears, there are at least two major causes

of failure models that are of primary concern: bending and

contact stress. A gear train must satisfy the rotation output

objective as well as the system reliability constraints, which

are used to account for uncertainty existing in different

failure models, material properties, and geometric parameters

of gears. According to optimization design methods, the



deterministic problem is stated as
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Minimize Fv (X) = nin H (xi / xi+l)

i = 1,2,3,...,M (5-i)

subject to

Wt Pi

K, B_ Ji
Ob_ 0 (5-2)

1 1
4" m

W, Re i Ro i

2 2
Ixe i) (I - lao ,)

_Pf _0 f

- o _ 0
¢1 (5 -3)

X I < X _ X u ; N I _ X _ N u ;

where

M = number of gears and pinions in system.

Bi = gear face width (in). ( Bi = k Xi)

Pi = diametral pitch (number of tooth/in).

X i = pitch diameter for gears and pinions (in).

k = coefficient of gear face width.

O = the pressure angle.



Wt = the transmitted load.

Ji = geometry factor of gear and pinion.

K v = dynamic factor.

DPi = poisson's ratio of pinion.

DGi = poisson's ratio of pinion.

Epi = modules of elasticity for pinion.

EGi = modules of elasticity for pinion.

_b_ = allowable bending stresses.

_c_ = allowable bending stresses.

Rpi = radius of involute on pinion.

RGi = radius of involute on gear.

nin = input of rotation speed (i/min)

N i = number of tooth for gears and pinions (Ni=D± Pl)
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X,N are a column vector with n rows and the subscripts 1 and

u represent the lower and upper bounds on X,N respectively.

Because the probabilistic design is concerned with

probability of failure or the reliability of system, the

probabilistic equivalent formulation of (5-1);(5-2); (5-3) can

be written as:

Minimize Fv(x) = n±nH(xi / xi,1)

i = 1,2,3,...,M (5-4)
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P[GI(X)_ 0]2 Pl

i = 1,2,3, ...,M (5-5)
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where

_zt Pt
G_(X) . a b _ (5-6)

Kv BI J1

O1.,(A9-

1 1
m 4"

W t Rp i Ro !

2 2
0 _ B I (I Ppl) (I - g'ol)

4-

E_, Eo,

- a,, (5-7)

and X is a vector of n random variables and Pi is the

specified reliability level of the system.

In terms of the principle of reliability design method

based on optimization techniques, the formulation given in

equations (5-4),(5-5),(5-6) and (5-7) were recast for

application of reliability based optimization. They were

Minimize Fv (X) = nin _ (Xi / Xi+I)

i = 1,2,3, ...,M (5-8)
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Gi(X) = _i - ¢-1(pi)

i = 1,2,3, ...,M (5-9)
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where GI(X) are defined by equations (5-6) and (5-7) and ¢-i(.)

is the inverse of the standard normal distribution function.

Of course, it may be necessary to scale (5-9) to avoid problem

when using nonlinear program for constrained optimization of

the type presented in [28][32].

The mean value of the pitch diameter of teeth in the

pinions and gears is to be determined for a minimum rotation

output of a gear train to satisfy some specified reliability

level. It is assumed that all material properties reported are

at their mean values. Since actual data are generally not

available, the standard deviation, o, may be estimated by

coefficient of variation.

coy _ _! (5-Io)

where COV is the coefficient of variation, o i is the standard

deviation, and X is the mean value of a random variable.
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5-3 Ex_lo Dosign

To demonstrate the application of reliability based

optimization method, we consider the following problem:

Designing a spur gear train shown on Figure 5-1 involves

minimizing the rotation output while satisfying the stress

constraints. It is delivered transmitting i00 hp with a shaft

rotating input at 2000 rmp. The material to be used is AISI

1095. The material properties and other information are given

in Table 5-1.

To execute this design problem, certain assumptions are

made. The dynamic factor kv is assumed to be I. The J-factor

is computed using the fitted equation given by Carrol and

Johnson [41]. Because of the limitations of design geometric

and undercutting, N I is assumed to be 17, and N u is assumed to

be i00. Since the maximum contact stress occurs at the

lowest point of single tooth contact [42], this point is

close to the pitch point; thus, the sliding velocity is

small.

Therefore, the formula (5-7) is modified as follows:

W [ Xp Xa, + I- p___2+ 1 - p 2

F'Pt E°,

- o a _ 0 (5-11)
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Figure 5-1. Gear train for design example [43]
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Table 5 - 1. Summary of material properties and other information

for the example problem

Variables Values

Power (_w)

Rotation input

Yield stress crv_

Yield stress cr_

Tensile stresss Or1

Tensile stresss or_

Possion's ratio F

Pressure angle 0
Coefficient of width L

Coefficient of variation ( COV )

Power efficiency r I

Modulus of elasticity F__1; F__:

Modulus of elasticity E_I ; E._

100 hp

2000 (l/rain)

83 kpsi ( 572.4 MPa)

83 kpsi ( 572.4 MPa)

142 kpsi ( 979.3 MPa)

142 kpsi ( 979.3 MPa)

0.30

200

0.60

0.05

99.0 %

30 x 106 Psi ( 205 Gpa )

30 x 106 Psi ( 205 Gpa )
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where in terms of Figure 5-2

1 1 1 1

ap, ao, rp,sin_' "G, m 4'

(s-12)

and

XPt. X°t

rp, . 2 r °' 2
(5-13)

therefore

(Xp ÷ Xoi '
1 1 2 ,

R, ao, sl-_ X, Xo,
(5-14)

After the modification of functions, then GRG

(Generalized Reduced Gradient method) optimizer is applied to

calculating the probability of failure, reliability and safety

index. The probability of failure, reliability, and safety

index are illustrated in Table 5-2, which are based on the

calculation using GRG computer program.
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\
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\

Figure 5-2. Radii of curvature R_ and Ro for

tooth surface at pitch point O
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This system can be considered to be series system. A

series system is one in which all components are so

interrelated that the entire system will fail even if any one

of its components fails. Let us suppose that the components

are independent, namely, that the performance of any one part

does not affect the reliability of the others. Under these

conditions, the reliability of this system is defined as

follows:

R= [I R, (s,s)

where Rs is the reliability of system, R± is the reliability

of each component, and i is equal to 4 for this design.

The approximate function can be constructed for the

computation of optimization method. It is

Gi(X) = _i - qb-1(pi)

i = 1,2 (5-16)

where Gi(X) is defined by (5-6),(5-11) and Pi is defined by the

reliability of system Rs.

After the construction of the approximate functions, an

appropriate optimizer, GRG computer program is used in order

to obtain the best design results for this design system.
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Optimization functions are based on objective function (5-8)

and constraints (5-16). These values, rotation input nin;

Possion's ratio _i; Modulus of elasticity Ei; coefficient of

width kl; delivered transmitting hp, are kept constant during

the optimization process. Diametral pitch p_ are assumed as 6

(teeth/in) and 5 (teeth/in). The results for this design

system using reliability based optimization methods are shown

in Tables 5-2 through 5-5 and Figures 5-3 through 5-7. All of

calculation for this project in detail is in Appendix A.
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Table 5 - 2. Results for the reliability of each component

Situation

bending case for pinion 1

81(X) function(Eq. 5-2,i= 1)

contact case for pinion 1

g2(X) function(Eq. 5-3,i= 1

bending case for pinion 2

g3(X) function)Eq. 5-2,i=2)

contact case for pinion 2

g4(X) function(Eq.5-3,i=2)

system

Prob.of failure Pf

0.15900 x 10 .3

Reliability Ri (%)

99.9841

safetyindex Bi

3.599571

0.70500 x 10 .5 99.999295 4.3433106

0.54810 x 10 .2 99.4519 2.543948

0.72686 x 10 .2 99.273136 2.443667

0.12874 x 10 1 98.7126265 2.230000
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Table 5 - 3. Results for reliability vs. the change of pitch diameter for each gear,

rotation output ( System safety index 13= 2.23. )

reliablity

(%)

93.32

96.41

97.13

97.73

97.98

98.715

dt, pitch

diameter(in)

4.03

3.12

3.28

3.49

3.60

4.03

d2, pitch

diameter(in)

15.28

14.11

14.46

14.80

14.95

15.28

d3, pitch

diameter(in)

6.35

5.24

5.48

5.75

5.90

6.35

d4, pitch

diameter(in)

14.98

13.87

14.17

14.47

14.62

14.98

rotation

output(i/rain)
223.71

166.93

175.73

187.43

194.33

223.71

98.78 4.08 15.39 6.41 15.02 226.15

98.81 4.11 15.42 6.45 15.04 228.60

99.18 - -

Note: * indicates deterministic solution.

- shows no feasible solution.
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Table 5 - 4. Results for reliability vs. the change of the number of teeth, face width

( System safety index 13= 2.23. )

( Assumed the diametral pitch Pz = 6 teeth/in; P2 =5 teeth/in)

reliablity N1, number Nz, number N3, number N4, number

(%) of teeth of teeth of teeth of teeth
* 24 92 32 75

93.32 -

96.41 19 85 26 70

97. i3 20 87 27 71

97.73 21 89 29 72

97.98 22 90 30 73

98.715 24 92 32 75

98.78 25 92 32 75

98.81 25 93 32 75

99.18 - - -

face width for face width for

pinion 1 ( in ) pinion 2 ( in )
2.4 3.81

1.87 3.14

1.97 3.29

2.09 3.45

2.16 3.54

2.40 3.81

2.45 3.85

2.47 3.87

Note: * indicates deterministic solution.

- shows no feasible solution.

Table 5 - 5. Results for reliability vs. applied stresses and rotation output

( System safety index 13= 2.23. )

reliablity

(%)

93.32

96.41

97.13

bending stress

for pinion 1

(ksi)

10.07

13.10

12.23

contact stress

for pinion 1
(ksi)

79.46

78.65

78.90

bending stress

for pinion 2

(ksi)

12.17

16.06

14.96

contact stress

for pinion 2

(ksi)

80.20

79.00

79.37

rotation

output

(1/min)

223.71

166.93

175.73

* indicates deterministic solution.

- shows no feasible solution.

Note:

98.81 9.90 79.50

99.18

97.73 11.38 79.14 13.83 79.72 187.43

97.98 10.99 79.24 13.27 79.88 194.33

98.715 10.07 79.46 12.17 80.20 223.71

98.78 9.98 79.48 12.16 80.22 226.15

12.05 80.23 228.60
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5-4. Discussions

To aid in the discussion of the research,

79

the actual

stresses in the pinion tooth are shown in Figures 5-6 and 5-7.

The system safety index shown in Tables 5-3 through 5-5 is the

minimum possible, based on the given information in Table 5-1.

By comparing the results, the rotation output of the gear

train is increasing when the system reliability is increasing.

This means if the higher reliability of system in design is

selected, the heavier, larger system has to be taken. However,

there is the limitation of a system reliability taken by a

designer. It is impossible to obtain higher reliability of

system more than 99.379 percent in this design. The reason is

that reliability for an engineering system depends on the

mean and standard deviation or Coefficient of Variation (COV)

of design parameters. According to the principle of

Probabilistic Design Method (PDM), if the higher standard

deviation or COV in design is used, then the system will have

the suitable reliability. Once this reliability exceeded the

limitation of design situation, all of the design parameters

are infeasible as shown in Figures 5-3 through 5-7.

From the Tables 5-3 through 5-5, the values of the design

variables, which obtained by using Optimization Method and

Reliability Design Method based on optimization techniques,

are the same in the system reliability of 98.715 percent. It
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is true that the deterministic values are the same as the

probabilistic approach. By transforming the limit state

functions g(X) to g(u) that had been mentioned previously, the

most probable point (MPP) in the u-space is on the objective

and constraint functions. Therefore, when the same safety

index is taken, the values of design variables obtained by

using both methods should be the same.

Finally, we can see from the Figures 5-6 and 5-7, with

the increase of reliability, the bending stress tends to

decreasing while the contact stress inclines to increasing.

This situation indicates that the failure of contact stress is

more sensitive than the failure of bending stress. In

conclusion, the design mainly has to be concentrated on the

contact stress when trying to deliver high power and high

rotation in the design of gear.



CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH SUGGESTIONS

6-1. Conclusions

The Probabilistic Design Method (PDM) is widely used in

engineering design. PDM can be employed for stochastic design

parameters to obtain the values of design variables under a

specific reliability of component / system. PDM eliminates the

deterministic design method's defect that the design variables

must be deterministic. Also, this method makes a wider range

of the values of design variables that can be selected by

design engineers. However, if the design objective function is

minimized for the volume or cost of component / system or a

special design requirement, the values of design variables

obtained by using PDM could not be the optimal design points

in the design. Furthermore, this method reaches the failure of

probability or a reliability of component / system, which is

based on the mean and standard deviation of random design

parameters.

Optimization design method is a powerful tool in

8]
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engineering design. It emphasizes how to obtain the values of

design variables that make the design objective function

minimum or maximum using mathematical tools. The values of

design variables obtained using optimization design method are

optimal and critical; in other words, these values of design

variables must make the system or components higher

reliability or lower probability of failure. However,

optimization design methods belong to a deterministic design

method. In practice, design variables cannot be considered

deterministic but stochastic. In addition, in the

deterministic approach, random effects are ignored.

There is no question that both PDM and optimization

design method have their own disadvantages. Probabilistic

design method was not concerned with the minimum or maximum

design objectives but the probability of failure or the

reliability of a system. In optimization design method,

design variables must be deterministic. The method of

reliability based on optimization design method eliminates

these disadvantages with PDMand optimization design method.

Not only that it can be applied to the situation of uncertain

design variables in engineering design but also provide the

wide range of reliability that designers can choose for

engineering system or components in optimization design.
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6-2 Suggestions for Future Research:

Based on the results of the present study, the following

topics may be addressed in future research:

In this design of gear train, only both bending and

contact stress were taken as design limit functions. Actually,

it is complex to practically design a gear train, especially

when the input power is more than 75 KW. Therefore, various

design factors may be considered in future design of a gear

train, such as thermal conditions, wear and dynamic factors,

and so on.

Since the safety index is defined as the minimum

distance from the origin to the surface of the limit state

function, minimizing the safety index using optimization

techniques is a kind of calculated method. Therefore, there

may be the comparison of using optimization techniques and

NESSUS code to compute safety index and reliability of each

component and system in future research.
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APPENDIX A:

A-1. The functions for calculating the safety index 13

Objective function:

safety

1
n m

inaex(p) _ ( _ x: )2
J-I

where n = number of design variables in function (slack variables are not included)

Constrained functions:

1) Bending function (Equation 5-2, i = 1)

G(1)= 3.49"(1+ 0.05* x(6))-
(l+0.05*x(5))*(1.76*x(1)*x(2)*x(3)+17.36*x(2)+6.68*x(1))
+ (x(1)3x(2)*x(a))-x(7)2

G(2)= 1.75-x(5)-x(8)2
G(3)= x(6)+l.S-x(9) 2
G(4)= x(7)
G(5)= x(S)
G(6)= x(9)

where x(1) = pitch diameter of pinion 1.

x(3) = gear face width.

x(5) = the transmitted load.

x(7),x(8),x(9) are slack variables.

x(2) = pitch diameter of gear 1.

x(4) = diametral pitch.

x(6) = allowable bending stress.

2) Bending function (Equation 5-2, i = 2)

G(I)= 4.005"(1+0.05*x(6))-
x(S)*(l+0.05*x(S))*(1.76*x(1)*x(2)*x(3)+17.36*x(2)+6.68*x(1))
+ (x(1)3x(2)*x(4)*x(7))-x(9)2

G(2)= 1.75-x(5)-x(10)2
G(3)=x(6)+l.8-x(11)2
G(4)=x(9)
G(5)=x(lO)
G(6)=x(11)
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where x(1) = pitch diameter of pinion 2.

x(3) = gear face width.

x(5)= the transmitted load.

x(7) = pitch diameter of pinion 1.

x(9),x(lO),x(11) are slack variables.

x(2)= pitch diameter of gear 2.

x(4)-- diametral pitch.

x(6)= allowable bending stress.

x(8)= pitch diameter of gear 1.

3) Contact function (Equation 5-3, i = 1)

c,(1)=

G(2) =

c,(3)=
c,(4)=
c,(5)=
G(6) =

0.169"(1+ 0.05* x(5))2-
(1+0.05*x(4))*2.079*(x(1)+x(2)) + (x(1)3x(3)*x(2))-x(6)2
1.75-x(4)-x(7)2
x(5)+l.32-x(8) 2
x(6)
x(7)
x(S)

where x(1) = pitch diameter of pinion 1.

x(3) = gear face width.

x(5) = allowable contact stress.

x(2) = pitch diameter of gear 1.

x(4)= the transmitted load.

x(6),x(7),x(8) are slack variables.

4) Contact function (Equation 5-3, i = 2)

G(1)= 0.169"(1+0.05*x(5))2-
(1+0.05*x(4))'2.058"x(6)*(x(1)+x(2))+ (x(1)3x(a)*x(2)*x(7))-x(8)2

G(2)= 1.75-x(4)-x(9)2
G(3)=x(5)+1.32-x(10)2
G(4)=x(8)
c_,(5)=x(9)
G(6)=x(10)

where x(1) = pitch diameter of pinion 2.

x(3) = gear face width.

x(5) = allowable contact stress.

x(7) = pitch diameter of gear 1.

x(2) = pitch diameter of gear 2.

x(4) = the transmitted load.

x(6) = pitch diameter of pinion 1.

x(8),x(9),x(10) are slack variables.
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items Bending
Function

Bending
Function 21

-1

-1

-1

1

1

-1.5

-1

1

1

1

1

x(9),x(10),x(11)

Contact

Function

x(1) -2 -1

x(2) -1 -1

x(3) 1 -1

x(4) -1 1

x(5) 1 -1.5

x(6) -1.5 1

x(7) 1 1

x(8) 1 1

x(9) 1

x(lO)

x(ll)

slack variables x(7)_(8),x(9) x(6)_(7),x(8)

Contact

Function 2

-1

-1

-1

2

-1.5

-1

1

1

1

1

x(8),x(9),x(10)
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items

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(lO)

x(ll)

safety index 13

Bending
Function 1

-2.04827

-0.8867294

0.1829933

-1.280323

1.75000

-1.8000

-6.9628E-11

-1.6310E-10

-3.0381E-11

3.599571

Bending
Function 2

-0.2909197

-0.1438399

-1.20627E-2

0.2049768

1.749835

-1.799837

-0.1511611

8.280489E-5

3.369595E-7

-1.19630E-7

-2.82766E-7

2.543948

Contact

Function 1

-2.871211

-1.516372

-1.874681

1.75000

-1.32000

-5.4607E-11

-1.8506E-11

3.6605E-11

4.343106

Contact

Function 2

-0.7595228

0.7614115

8.755293E-2

1.747578

-1.318175

-0.0891021

8.755323E-2

-7.770096E-7

-1.522156E-5

-1.863136E-6

2.443667
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Objectivefunction:

Rotation output F(X) = 2000 × x(1) x(3)

x(2) x(4)

Constrained functions:

G(1)=1-10.51- (x(5)*x(1)3*x(2))
*(10.58*x(1)*x(2)+17.36*x(2)+6.68*x(1)) +2.23-13

G(2)=l -10.4*x(2)+(x(6)*x(1)*x(3)3*x(4))
*(8.815*x(3)*x(4)+17.36*x(a)+6.68*x(3) +2.23-13

G(3)= 1-588.467+x(7)*((x(1)+x(2))+(x(1)3 *x(2)))°-5+2.23-13
G(4)=1-585.517+x(8)*(x(2)*(x(3)+x(4)).-(x(3)3*x(1)*x(4)))°'5+2.23-13

where x(1)= pitch diameter of pinion 1. x(2) = pitch diameter of gear 1.

x(3) = pitch diameter of pinion 2. x(4) = pitch diameter of gear 2.

x(5) = applied bending stress for bending function 1.

x(6) = applied bending stress for bending function 2.

x(7)= applied contact stress for contact function 1.

x(8) = applied contact stress for contact function 2.

13 = specific safety index selected by designer.

A-5 input data for calculation of optimal design variables

(assumed the diametral pitch of the first pair of gears = 6

of the second pair of gears = 5 1/in )

1/in; the diametral pitch

items x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8)

initial points 3.7 9.7 5 11 22 25 120 125

limited maximum 16.7 16.7 20 20 83 83 142 142

limited minimum 2.8 2.8 3.4 3.4 5 5 5 5

note: unit for x(1) to x(4): in.

unit for x(5) to x(8): ksi.
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A-6 output data from calculation of optimal design variables (system safety index 13=2.23)

specific safety index 13 x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) F(x)

13= 1.5 .......

13= 1.8 3.12 14.1 5.24 13.9 13.1 16.1 78.7 79.0 166.9

13= 1.9 3.28 14.5 5.48 14.2 12.2 15.0 78.9 79.4 175.7

13= 2.0 3.49 14.8 5.75 14.5 11.4 13.8 79.1 79.7 187.4

13= 2.05 3.60 15.0 5.90 14.6 11.0 13.3 79.2 79.9 194.3

13= 2.23 4.03 15.3 6.34 15.0 10.1 12.4 79.4 80.1 223.6

13= 2.25 4.08 15.4 6.41 15.0 10.0 12.2 79.5 80.2 226.2

13=2.26 4.11 15.4 6.45 15.0 9.90 12.1 79.5 80.2 228.6

13= 2.28 ........

note: - means infeasible solution

unit for F(X): 1/min.

unit for x(1) to x(4): in.

unit for x(5) to x(8): ksi.
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DECLARE SUB

DECLARE SUB

DECLARE SUB

DECLARE SUB

DECLARE SUB

DECLARE SUB

FTERM/N (maintestr, xf 0, n!, neT, pvalue!)

CONSTRAINT (xt0, cons!0, n!, ne!)

PENALFX (xT0, cons!0, fxvalue!, pvalue!, beta!, nT)

QNEWTON (x!0, s!0, nT, tol!)

LINESEARCH (x!0, s!0, n!, h!, tol!)

UPDATEDFP 0

DECLARE SUB TERMINATION 0

DECLARE FUNCTION OBJECTIVE! (x! 0, nF)

DECLARE SUB DIRECTION 0

DECLARE SUB UPDATEMAT 0

DECLARE SUB PDERIVATIVE 0

DIM SHARED x(20), xo(20), y(20), f(20), p(20), u(20), ds(20), dr(20, 20)

DIM SHARED delx(20), delg(20), s(20), grad(20)

COMMON SHARED ja, jb, jc, jd, jmin, xmin, ji, fbase, iter

COMMON SHARED ql, tol, fmin, G, 1, n, m, size, c 1, fcount, lgec

COMMON SHARED mloop, fee, d, fo, h, gtest, start, hstep, update

COMMON SHARED pvalue, ne, beta

CLS

PRINT

PRINT

INPUT "How many variables"; n

INPUT "Total number of constraints"; ne

DIM SHARED b(n, n), cons(ne)

INPUT "what is the tolerance"; tol

d =. 1: fcount = 0: fee = 0: mloop = 1

DIM SHARED xt(n), ao(n, n), gx(n)

FOR i = 1 TO n

PRECr"x(";i; ")":INPUTx(i)
xo(i) = x(i): y(i) = x(i)

NEXT i

INPUT "enter output file please:", outfile$

IF outfile$ = "" THEN END

OPEN outfile$ FOR OUTPUT AS #2

beta = 1: malntest = 1

DO UNTIL maintest = 0

CALL QNEWTON(x0, sO, n, tol)

CALL FTERMIN(maintest, x0, n, ne, pvalue)

beta = 1.5 * beta

FOR i = 1 TO n: PRINT "x("; i; ")="; x(i): NEXT i



PRINT " pvalue=";pvalue,beta:' INPUT o
LOOP

finish = TIMER

PRINT "finish="; finish

maxtime = finish - sstart

finish! = TIMER

PRINT #2, "Program took"; maxtime; " sec."; giter; "iteration(s)"
PRINT

PRINT #2, "The solution after"; iter; "iteration(s) :"
FOR i = 1 TO n

PRINT #2, "x("; i; ") ="; x(i); "grad("; i; ")="; grad(i)
NEXT i

CALL PENALFX(x0, cons0, fxvalue, pvalue, beta, n)

fo = OBJECTIVE(x0, n)

PRINT #2, "Objective Function="; fo, "fcount="; fcount

IF update = 1 THEN

PRINT #2, "Using the DFP update and initial step of"; cstep
ELSE

PRINT #2, "Using the BFGS update and initial step of'; cstep
END IF

PRINT #2, "The solution after"; iter; "iteration(s) :"
FOR i = 1 TO n

PRINT #2, "x("; i; ") ="; x(i); "grad("; i; ")="; grad(i)
NEXT i

PRINT #2, "Objective Function="; fo, "fcount="; fcount

IF update = 1 THEN

PRINT #2, "Using the DFP update and initial step of'; cstep
ELSE

PRINT #2, "Using the BFGS update and initial step of'; cstep

ENDIF

PRINT #2, "tolerance="; tol
END

SUB BFGS

DIM at(n),af(n,n)
FOP. i = I TO n

delg(i) = grad(i) - gx(i)

delx(i) = x(i) - xo(i)

NEXT i

'Compute first denuminator
denuml -- 0

FOP. i = 1 TO n
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denuml = denuml + delx(i) * delg(i)
NEXT i

' Compute the second denominator
denum2 = 0

FOR j = 1 TO n
sum = 0

FOR k = 1 TO n

sum = sum + delg(k) * ao(k, j)
NEXT k

denum2 = denum2 + sum * delg(j)

NEXTj
IF denuml <_ 0 AND denum2 <> 0 THEN

FOR i= 1 TO n

FOR j = 1 TO n

b(i, j) = delx(i) * delx(j) / denuml

NEXTj
NEXT i

FOR j = 1 TO n
suml = 0

FOR k = 1 TO n

suml = suml + aoG, k) * delg(k)

NEXT k

at(j) = suml

NEXTj

FOR i = 1 TO n

FOR j = 1 TO n

af(i, j) = at(i) * at(j) / denum2

NEXTj
NEXT i

' Form updated matrix
FOR i = 1 TO n

FOR j = 1 TO n

ao(i, j) = ao(i, j) + b(i, j) - af(i, j)

NEXTj

NEXT i: start = 1

ELSE

start = 0

END IF

END SUB

SUB CONSTRAINT (x0, consO, n,ne)

REM contactfunctionI

'cons(l) = .169 * (1 + .05 * x(5)) ^ 2 - (1 + .05 * x(4)) * 2.079 * ((x(1) + x(2)) / (x(1) ^ 3 * x(3)
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* x(2))) - x(6) ^ 2
'cons(2)= 1.75- x(4)- x(7) ^ 2
'cons(3)= x(5) + 1.32- x(8) ^ 2
'cons(4)= x(6)
'cons(5)= x(7)
'cons(6)= x(8)

REM bendingfunction2
cons(l) = 4.005* (1 +.05 * x(6)) - x(8) * (1 +.05 * x(5)) * (1.76 *x(1) *x(2) * x(3) + 17.36 *

x(2) + 6.68 * x(1)) / (x(1) ^ 3 * x(2) * x(4) * x(7)) - x(9) ^ 2

cons(2) = 1.75- x(5)- x(10) ^ 2

cons(3) = x(6) + 1.8 - x(11) ^ 2

cons(4) = x(9)

cons(5) = x(10)

cons(6) = x(11)

REM bending function 1

'cons(l) = 3.49 * (1 + .05 * x(6)) - (1 + .05 * x(5)) * (1.76 * x(1) * x(2) * x(3) + 17.36 * x(2) +

6.68 * x(1)) / (x(1) ^ 3 * x(2) * x(4)) - x(7) ^ 2

'cons(2) = 1.75 - x(5) - x(8) ^ 2

'cons(3) = x(6) + 1.8 - x(9) ^ 2

'cons(4) = x(7)

'cons(5) = x(8)

'cons(6) = x(9)

REM contact function 2

'cons(l) = .169 * (1 + .05 * x(5)) ^ 2- (1 + .05 * x(4)) * 2.06 * x(6) * ((x(1) + x(2)) / (x(1) ^ 3 *

x(3) *x(2) * x(7))) - x(8) ^ 2
'cons(2) = 1.75 - x(4) - x(9) ^ 2

'cons(3) = x(5) + 1.32 - x(10) ^ 2

'cons(4) = x(8)

'cons(5) -- x(9)

'cons(6) = x(10)
END SUB

SUB DIRECTION

IF start = 0 THEN

'Set the identity matrix

FOR i = 1 TO n

FOR j = 1 TO n

IF i=j THEN

ao(i, j) = 1

ELSE



ao(i,j) = 0
END IF

NEXTj
NEXT i

ENDIF
'Identifypoint atwhichA is setto identiymatrix

lgec= gee
' Savetheinitial point andthegradientat thispoint
FORj = 1TO n

xo(j) = x(j)
gx(j)= grad(j)

NEXTj
'Form the stepand product of stepand gradient

cl = 0: snorm = 0

FOR i = 1 TO n

sum = 0

FOR j = 1 TO n

sum = sum - ao(i, j) * grad(j)

NEXTj
s(i) = sum: el = cl - sum * grad(i)

snorm = snorm + s(i) ^ 2
NEXT i

'Check if normalization is necessary
IF snorm > 100 THEN

snorm : snorm ^ .5

FOR i = 1 TO n

s(i) = s(i) / snorm
NEXT i

END IF

END SUB

SUB FTERMIN (maintest, x0, n, ne, pvalue)

IF pvalue <= tol OR beta > 1E+20 THEN

maintest = 0

ELSE

CALL PDERIVATIVE

gradvalue = 0

FOR i = 1 TO n

gradvalue = gradvalue + grad(i) ^ 2

NEXT i

gradvalue = gradvalue ^.5

IF gradvalue <= tol THEN
maintest = 0
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ENDIF
ENDIF
END SUB

SUBLINESEARCH (x0, sO,rgh, tol)

DIM xl(n)

toll = .0001

CALL PENALFX(x0, cons0, fxvalue, pvalue, beta, n)

fl = fxvalue

FOR t = 1 TO n

xl(t) = x(t)

NEXT t

FOR t = 1 TO n

x(t) = xl(t) + h * s(t)
NEXT t

CALL PENALFX(x0, cons0, fxvalue, pvalue, beta, n)

ff = fxvalue

IF if< fl THEN

routel = 1

DO UNTIL route 1 = 0

f2=ff:

FOR t = 1 TO n

x(t) = xl(t) + 2 * h * s(t):

NEXT t

CALL PENALFX(x0, cons0, fxvalue, pvalue, beta, n)

if= fxvalue

IF if> f2 THEN

routel = 0:t3 = ff

ELSE

h=2*h

ENDIF

LOOP

ELSE

routel = 1

DO UNTIL routel = 0

13=ff:

FOR t = 1 TO n

x(t) = xl(t) + .5 * h * s(t):

NEXT t

CALL PENALFX(x 0, cons0, fxvalue, pvalue, beta, n)

ff = fxvalue

IF if< fl THEN

routel = 0:t'2 = if: h = h / 2
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ELSE
h = -.5 * h: ' Note, you may change sign to "+"

ENDIF

IF ABS(h) <= 1E-14 THEN

route 1 = 0

END IF

LOOP

ENDIF

IF h > 1E-14 THEN

d=.5 *h*(4 *f2-3 * fl - 13) / (2 * f2 - fl - f3)

a=0: b=h: c=2 * h

test1 = 1

DO UNTIL test 1 = 0

FOR t = 1 TO n

x(t) = xl(t) + d * s(t):
NEXT t

CALL PENALFX(x0, cons0, fxvalue, pvalue, beta, n)
f4 = fxvalue

'Check convergence

IF ABS(f2 - f4) <= toll OR ABS(b - d) <= toll THEN
IF f4 < f2 THEN

alpha = d
ELSE

alpha = b
ENDIF

FOR t = 1 TO n

x(t) = xl(t) + alpha * s(t)

PRINT "x("; t; ")="; x(t)
NEXT t

CALL PENALFX(x0, cons0, fxvalue, pvalue, beta, n)

fopt = fxvalue

PRINT "fopt="; fopt
test 1 = 0

ELSE

' Check that bracket is not lost in discarding the max. pt

IF a <= d AND d <= b THEN

IF fl >= f4 AND f4 <= f2 THEN

c=b: t3 =f'2: b = d: t2 =f4

ELSE

a=d:fl =f4

ENDIF

ELSE

IF f'2 >= f4 AND f4 <= 13 THEN
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a=b: fl = f2: b = d: f2 = f4
ELSE

c=d:13 =f4

END IF

END IF

END IF

num=(b^2-c^2)* fl +(c^2-a^2)*f2+(a^2-b^2)* f3

den = (b - c) * fl + (c - a) * f2 + (a - b) * t3
IF den = 0 THEN

d=0

ELSE

d = .5 *num / den

ENDIF

LOOP

ELSE

FOR t = 1 TO n

x(t) = xl(t)
NEXT t

END IF

END SUB

FUNCTION OBJECTIVE (x0, n)

OBJECTIVE = (x(1) ^ 2 + x(2) ^ 2 + x(3) ^ 2 + x(4) ^ 2 + x(5) ^ 2 + x(6) ^ 2 + x(7) ^ 2 + x(8) ^

2) ^ .5
END FUNCTION

SUB PDERIVATIVE

DIMzI000)
' Subroutine computes the gradient

delta = .001: status = I

FOR j = l TO n

zl(j) -- x(j)

x(i) = zl(j) + delta

CALL PENALFX(x0, cons0, fxvalue, pvalue, beta, n)

yl = fxvalue

x(j) = zl(j) - delta

CALL PENALFX(x0, cons0, fxvalue, pvalue, beta, n)

y2 = fxvalue

grad(j) = (yl- y2)/(2 * delta)

x(j) = zl(j)

NEXTj
END SUB



SUBPENALFX (x0, cons0, fxvalue, pvalue, beta, n)

CALL CONSTRA/NT(x0, cons0, ne, n)
sumc = 0

FOR i = 1 TO ne

sumc = sumc + cons(i) ^ 2
NEXT i

pvalue = sumc ^ .5:
' Handle the bounds on variables

fxvalue = OBJECTIVE(x0, n)

fxvalue = fxvalue + beta * (sumc)
END SUB

SUB QNEWTON (x0, sO, n, tol)

status = 1: pass = 0: iter = 0

hstep = 1: mloop = 1: cstep = hstep

'Evaluate gradient at current point x 0

CALL PDERIVATIVE: gec = gee + 1

'Start iteration process

start = 0

sstart = TIMER

CALL PENALFX(x0, cons0, fxvalue, pvalue, beta, n)
fo = fxvalue

fee = fee + 1

DO UNTIL mloop = 0

CALL DIRECTION

' Test for search direction

CALL PENALFX(x0, cons0, fxvalue, pvalue, beta, n)

foase = fxvalue

' Perform a line search
I ..............................

h = hstep

CALL LINESEARCH(x0, sO, n, h, tol)

CALL PENALFX(x0, cons0, fxvalue, pvalue, beta, n)
fmin = fxvalue

iter = iter + 1

CALL PDERIVATIVE

CALL TERMINATION: 'Check for convergence

IF mloop <> 0 THEN
IF fmin >= tbase THEN

start = 0: ' Restart the search using old direction

' but reduce step size

hstep = h / 2

IF h <= .000001 * cstep THEN
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mloop= 0
END IF

ELSE

CALL UPDATEDFP

'Set a new search direction

hstep = cstep
END IF

END IF

LOOP

END SUB

SUB TERMINATION

xtest = 0: flest = 0: gtest = 0: gtol = .000001
flol = .000001: xtol = .000001

FOR i = 1 TO n

'IF ABS(xo(i) - x(i)) <= xtol THEN

xtest = xtest + ABS(xo(i) - x(i))
' ENDIF

gradvalue = gradvalue + (grad(i)) ^ 2

NEXT i: gtest = (gradvalue) ^ .5
IF foase _ 0 THEN

fiest = (fmin - ibase)
END IF

IF gtest <= gtol THEN

mloop = 0
END IF

END SUB

SUB UPDATEDFP

DIM at(n), at(n, n)

FOR i = 1 TO n

delg(i) = grad(i)- gx(i)
delx(i) = x(i) - xo(i)

NEXT i

'Compute first denuminator

denum 1 -- 0

FOR i = 1 TO n

denuml = denuml + delx(i) * delg(i)
NEXT i

' Compute the second denominator
denum2 = 0

FOR j = 1 TO n
sum = 0
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FOR k = 1 TO n

sum = sum + delg(k) * ao(k, j)

NEXT k

denum2 = denum2 + sum * delg(j)

NEXTj
IF denuml _ 0 AND denum2 <_ 0 THEN

FOR i-- 1 TO n

FOR j = 1 TO n

b(i, j) = delx(i) * delx(j) / denuml

NEXTj
NEXT i

FOR j = 1 TO n
suml = 0

FOR k = 1 TO n

suml = suml + ao(j, k) * delg(k)

NEXT k

at(j) = suml

NEXTj
FOR i = 1 TO n

FOR j = 1 TO n

af(i, j) = at(i) * at(j) / denum2

NEXTj
NEXT i

' Form updated matrix

FOR i -- 1 TO n

FOR j = 1 TO n

ao(i, j) = ao(i, j) + b(i, j) - af(i, j)

NEXTj
NEXT i: start = 1

ELSE

start = 0

END IF

END SUB

SUB UPDATEMAT

DIM AA(n, n), af(n, n)
FOR i = 1 TO n

delg(i) = grad(i)- gx(i)

delx(i) = x(i) - xo(i)
NEXT i

denum = 0

FOR i = 1 TO n
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denum= denum + delx(i) * delg(i)
NEXT i

IF denum <> 0 THEN

FOR i = 1 TO n

FOR j -- 1 TO n

IF i=j THEN

b(i, j) = 1 - (delx(i) * delg(j)) / denum
ELSE

b(i, j) = -(delx(i) * delg(j)) / denum
END IF

NEXTj
NEXT i

FOR i = 1 TO n

FOR j = 1 TO n

sum = 0

FOR k = 1 TO n

sum = sum + b(i, k) * ao(k, j)

NEXT k

af(i, j) = sum

NEXTj
NEXT i

FOR i= 1 TO n

FOR j = 1 TO n
sum = 0

FOR k = 1 TO n

sum = sum + affi, k) * b(k, j)
NEXT k

AA(i, j) = sum + (delx(i) * delx(j)) / denum

ao(i, j) = AA(i, j)

NEXTj
NEXT i

FOR i = 1 TO n

FOR j = 1 TO n

NEXTj
NEXT i: start = 1

ELSE

start = 0

ENDIF

END SUB
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